Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Peptides ; 166: 171037, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301481

RESUMO

Prolactin (PRL) is a polypeptide hormone that has been reported to play a significant role in neuroprotection against neuronal excitotoxicity produced by glutamate (Glu) or kainic acid (KA) in both, in vitro and in vivo models. However, the molecular mechanisms involved in PRL's neuroprotective effects in the hippocampus have not been completely elucidated. The aim of the present study was to assess the signaling pathways involved in PRL neuroprotection against excitotoxicity. Primary rat hippocampal neuronal cell cultures were used to assess PRL-induced signaling pathway activation. The effects of PRL on neuronal viability, as well as its effects on activation of key regulatory pathways, phosphoinositide 3-kinases/Protein Kinase B (PI3K/AKT) and glycogen synthase kinase 3ß / nuclear factor kappa B (GSK3ß/NF-κB), were evaluated under conditions of Glutamate-induced excitotoxicity. Additionally, the effect on downstream regulated genes such as Bcl-2 and Nrf2, was assessed. Here, we show that the PI3K/AKT signaling pathway is activated by PRL treatment during excitotoxicity, promoting neuronal survival through upregulation of active AKT and GSK3ß/NF-κB, resulting in induction of Bcl-2 and Nrf2 gene expression. Inhibition of the PI3K/AKT signaling pathway abrogated the protective effect of PRL against Glu-induced neuronal death. Overall, results indicate that the neuroprotective actions of PRL are mediated in part, by the activation of the AKT pathway and survival genes. Our data support the idea that PRL could be useful as a potential neuroprotective agent in different neurological and neurodegenerative diseases.


Assuntos
NF-kappa B , Fármacos Neuroprotetores , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neuroproteção , Prolactina/farmacologia , Prolactina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Hipocampo/metabolismo , Fármacos Neuroprotetores/farmacologia , Neurônios/metabolismo , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo
2.
Neurosci Lett ; 810: 137344, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37315731

RESUMO

The aim of this study was to determine the effect of prolactin (PRL) on intracellular calcium (Ca2+) concentration and its neuroprotective role in a model of kainic acid (KA) excitotoxicity in primary cultures of hippocampal neurons. Cell viability and intracellular Ca2+ concentrations were determined by MTT and Fura-2 assays, respectively, either after induction by KA as an agonist or after treatment with NBQX antagonist alone or in combination with PRL administration. Expression of ionotropic glutamatergic receptors (iGluRs) subunits in neuronal cells was determined by RT-qPCR. Dose-response treatments with KA or glutamate (Glu), the latter used as endogenous agonist control, induced a significant increase in neuronal intracellular Ca2+ concentration followed by a significant decrease in hippocampal neuronal viability. Administration of PRL induced a significant increase in neuronal viability after treatment with KA. Furthermore, administration of PRL decreased intracellular Ca2+ concentrations induced by KA treatment. Independent administration of the AMPAR-KAR antagonist reversed cell death and reduced intracellular Ca2+ concentration in a similar manner as PRL. Additionally, mRNA expression of AMPAR, KAR and NMDAR subtypes were detected in hippocampal neurons; however, no significant changes in iGluRs subunit expression were observed due to excitotoxicity or PRL treatment. The results suggest that PRL inhibits the increase in intracellular Ca2+ concentration induced by KA, leading to neuroprotection.


Assuntos
Ácido Caínico , Prolactina , Prolactina/farmacologia , Ácido Caínico/toxicidade , Neuroproteção , Hipocampo/metabolismo , Neurônios/metabolismo
3.
Front Neuroendocrinol ; 61: 100913, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33766566

RESUMO

It has been well recognized that prolactin (PRL), a pleiotropic hormone, has many functions in the brain, such as maternal behavior, neurogenesis, and neuronal plasticity, among others. Recently, it has been reported to have a significant role in neuroprotection against excitotoxicity. Glutamate excitotoxicity is a common alteration in many neurological and neurodegenerative diseases, leading to neuronal death. In this sense, several efforts have been made to decrease the progression of these pathologies. Despite various reports of PRL's neuroprotective effect against excitotoxicity, the signaling pathways that underlie this mechanism remain unclear. This review aims to describe the most recent and relevant studies on the molecular signaling pathways, particularly, PI3K/AKT, NF-κB, and JAK2/STAT5, which are currently under investigation and might be implicated in the molecular mechanisms that explain the PRL effects against excitotoxicity and neuroprotection. Remarkable neuroprotective effects of PRL might be useful in the treatment of some neurological diseases.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Feminino , Hipocampo , Humanos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/farmacologia , Prolactina
4.
Neuroscience ; 461: 180-193, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647379

RESUMO

Glutamate (Glu) is known as the main excitatory neurotransmitter in the central nervous system. It can trigger a series of processes ranging from synaptic plasticity to neurophysiological regulation. To carry out its functions, Glu acts via interaction with its cognate receptors, which are ligand-dependent. Glutamatergic receptors include ionotropic and metabotropic categories. The first allows the passage of ions through the postsynaptic membrane, while the metabotropic subtype activates signaling cascades through second messengers. It is well known that an excess of extracellular Glu concentration induces overstimulation of ionotropic glutamatergic receptors (iGluRs), causing the excitotoxicity phenomenon that leads to neuronal damage and cell death. Excitotoxicity plays a crucial role in different brain pathologies such as brain strokes, epilepsy and neurodegenerative disorders. However, until now, there are no effective neuroprotective compounds to prevent or rescue neurons from excitotoxicity. Thus, the continuous elucidation of the molecular mechanisms underlying excitotoxicity in order to prevent damage or neuronal death is necessary. Therefore, the aim of this review was to summarize the current knowledge regarding iGluRs, while describing their structures and molecular mechanisms of action, including their role in excitotoxicity, as well as the current strategies to reduce excitotoxic damage. Particularly, strategies mediated by prolactin, a somatotropin family-related hormone that displays a significant neuroprotective effect against both Glu and kainic acid-induced excitotoxicity in the hippocampus, are described. Finally, the role of prolactin as a possible molecule in the treatment of excitotoxicity in neurological diseases is discussed.


Assuntos
Fármacos Neuroprotetores , Prolactina , Ácido Glutâmico/toxicidade , Neurônios , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Receptores de Neurotransmissores
5.
Environ Pollut ; 271: 116380, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33387779

RESUMO

A vast amount of evidence indicates that bisphenol A (BPA) and phthalates are widely distributed in the environment since these compounds are mass-produced for the manufacture of plastics and plasticizers. These compounds belong to a large group of substances termed endocrine-disrupting chemicals (EDC). It is well known that humans and living organisms are unavoidably and unintentionally exposed to BPA and phthalates from food packaging materials and many other everyday products. BPA and phthalates exert their effect by interfering with hormone synthesis, bioavailability, and action, thereby altering cellular proliferation and differentiation, tissue development, and the regulation of several physiological processes. In fact, these EDC can alter fetal programming at an epigenetic level, which can be transgenerational transmitted and may be involved in the development of various chronic pathologies later in the adulthood, including metabolic, reproductive and degenerative diseases, and certain types of cancer. In this review, we describe the most recent proposed mechanisms of action of these EDC and offer a compelling selection of experimental, epidemiological and clinical studies, which show evidence of how exposure to these pollutants affects our health during development, and their association with a wide range of reproductive, metabolic and neurological diseases, as well as hormone-related cancers. We stress the importance of concern in the general population and the urgent need for the medical health care system to closely monitor EDC levels in the population due to unavoidable and involuntary exposure to these pollutants and their impact on human health.


Assuntos
Disruptores Endócrinos , Exposição Ambiental , Adulto , Compostos Benzidrílicos/toxicidade , Política de Saúde , Humanos , Fenóis/toxicidade
6.
Front Genet ; 12: 673180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111194

RESUMO

Neoplasic transformation is a continuous process that occurs in the body. Even before clinical signs, the immune system is capable of recognizing these aberrant cells and reacting to suppress them. However, transformed cells acquire the ability to evade innate and adaptive immune defenses through the secretion of molecules that inhibit immune effector functions, resulting in tumor progression. Hormones have the ability to modulate the immune system and are involved in the pathogenesis of autoimmune diseases, and cancer. Hormones can control both the innate and adaptive immune systems in men and women. For example androgens reduce immunity through modulating the production of pro-inflammatory and anti-inflammatory mediators. Women are more prone than men to suffer from autoimmune diseases such as systemic lupus erythematosus, psoriasis and others. This is linked to female hormones modulating the immune system. Patients with autoimmune diseases consistently have an increased risk of cancer, either as a result of underlying immune system dysregulation or as a side effect of pharmaceutical treatments. Epidemiological data on cancer incidence emphasize the link between the immune system and cancer. We outline and illustrate the occurrence of hormone-related cancer and its relationship to the immune system or autoimmune diseases in this review. It is obvious that some observations are contentious and require explanation of molecular mechanisms and validation. As a result, future research should clarify the molecular pathways involved, including any causal relationships, in order to eventually allocate information that will aid in the treatment of hormone-sensitive cancer and autoimmune illness.

7.
Neurosci Lett ; 701: 58-64, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30790645

RESUMO

Prolactin (PRL) is a pleiotropic hormone secreted by several cells and tissues in the body, such as mammary glands, T-lymphocytes, hypothalamus, among others. This hormone possess neuroprotective properties against glutamate-excitotoxicity through the activation of NF-kB, suggesting it could exert an antioxidant action. However, the role of PRL on the antioxidant defense during glutamate-induced excitotoxicity is not clear to date. Therefore, in the present study, we have evaluated the effect of PRL on SOD activity and protein content of both of its isoforms (Mn2+-SOD and Cu2+/Zn2+-SOD), as well as, its action on mitochondrial activity in primary culture of hippocampal neurons of rats. Additionally, we have evaluated the possible antioxidant effect of PRL through the determination of lipid peroxidation products (LPO), measured as malondialdehyde (MDA). Results show that PRL enhances the activity and the protein content of Mn2+-SOD and Cu2+/Zn2+-SOD in neurons exposed to glutamate-induced excitotoxicity. Moreover, our results demonstrate that PRL prevents mitochondrial dysfunction induced by glutamate and significantly decreases the levels of LPO products. To our knowledge, this is the first time that a potential antioxidant effect of PRL has been described in hippocampal neurons exposed to glutamate excitotoxicity, opening questions of its potentiality for therapeutics.


Assuntos
Ácido Glutâmico/toxicidade , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Prolactina/farmacologia , Animais , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Cultura Primária de Células , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
8.
Neurosci Lett ; 694: 116-123, 2019 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500398

RESUMO

Neuroprotective effects of short prolactin (PRL) pre-treatment against kainic acid (KA)-induced damage include neuron loss avoidance in all hippocampal regions and attenuation of seizures. Recent evidence points PRL receptor (PRL-R) as mediator of such neuroprotective effects and seizures as regulators of neuronal marker transcript expression in the hippocampus. Here, we investigated if a daily PRL dose of 100 µg or vehicle for 14 days in ovariectomized rats (OVX) prevents neuron loss induced by KA administered on the third day of PRL treatment in a systemic single dose of 7.5 mg/kg or vehicle, and promotes PRL-R, vesicular glutamate transporter 1 (VGLUT1) and glutamic acid decarboxylase 65 (GAD65) expression changes in the hippocampus of sacrificed rats 27 days after the KA administration. Immunostaining for Neu-N and PRL-R revealed significant neuron number and PRL-R expression reduction induced by KA that was prevented and turned into overexpression respectively in all hippocampal regions when PRL was added; while VGLUT1,and GAD65 immunostaining displayed expression decrease in the CA1 of injured rats, prevented in the last case and turned into VGLUT1, overexpression when administered PRL. These data indicate that chronic PRL administration before damage induces hippocampal neuroprotection associated with PRL-R and VGLUT1 overexpression, the latter in a regiondependent way.


Assuntos
Hipocampo/efeitos dos fármacos , Ácido Caínico/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Prolactina/administração & dosagem , Receptores da Prolactina/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Animais , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Glutamato Descarboxilase/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Neurônios/metabolismo , Ratos
10.
Cogn Process ; 17(4): 443-449, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27271684

RESUMO

One of the main hallmarks of Alzheimer's disease includes the neurofibrillary tangles formation produced by hyperphosphorylation of the Tau protein, whose expression is putatively regulated by the ovarian hormones estradiol and progesterone. Hippocampus is a brain region that participates in many functions related to learning and memory; in addition, it is abundant in both estradiol and progesterone receptors. In this study, we explore the expression of Tau hyperphosphorylation at hippocampus and the performance of rats in an autoshaping learning task at 5, 10 and 15 months after the ovaries removal. In these animals, ovariectomy was performed at 3 months of age. These data were compared with those derived from intact rats at 8, 13 and 18 months old. A clear decrease in the number of conditioned responses of both intact and ovariectomized rats in the autoshaping learning task was observed. The interaction of both factors confirms that, in this test, learning varies depending on aging and the presence or absence of ovaries. A progressive increase in hippocampal Tau phosphorylation at Ser-396 was observed in either intact or ovariectomized rats. Interestingly, an interaction between the analyzed factors shows that such hyperphosphorylation was potentiated by the absence of ovaries. These results emphasize the importance of aging and the lack of ovarian hormones for an associative learning test and for the expression of one of the most important hallmarks of Alzheimer's disease.


Assuntos
Envelhecimento/fisiologia , Região CA1 Hipocampal/metabolismo , Ovariectomia , Proteínas tau/metabolismo , Análise de Variância , Animais , Aprendizagem por Associação/fisiologia , Feminino , Regulação da Expressão Gênica/fisiologia , Fosforilação , Ratos , Ratos Wistar
11.
Brain Res ; 1636: 193-199, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874070

RESUMO

Recently it has been reported that prolactin (PRL) exerts a neuroprotective effect against excitotoxicity in hippocampus in the rat in vivo models. However, the exact mechanism by which PRL mediates this effect is not completely understood. The aim of our study was to assess whether prolactin exerts neuroprotection against excitotoxicity in an in vitro model using primary cell cultures of hippocampal neurons, and to determine whether this effect is mediated via the prolactin receptor (PRLR). Primary cell cultures of rat hippocampal neurons were used in all experiments, gene expression was evaluated by RT-qPCR, and protein expression was assessed by Western blot analysis and immunocytochemistry. Cell viability was assessed by using the MTT method. The results demonstrated that PRL treatment of neurons from primary cultures did not modify cell viability, but that it exerted a neuroprotective effect, with cells treated with PRL showing a significant increase of viability after glutamate (Glu)--induced excitotoxicity as compared with neurons treated with Glu alone. Cultured neurons expressed mRNA for both PRL and its receptor (PRLR), and both PRL and PRLR expression levels changed after the excitotoxic insult. Interestingly, the PRLR protein was detected as two main isoforms of 100 and 40 kDa as compared with that expressed in hypothalamic cells, which was present only as a 30 kDa variant. On the other hand, PRL was not detected in neuron cultures, either by western blot or by immunohistochemistry. Neuroprotection induced by PRL was significantly blocked by specific oligonucleotides against PRLR, thus suggesting that the PRL role is mediated by its receptor expressed in these neurons. The overall results indicated that PRL induces neuroprotection in neurons from primary cell cultures.


Assuntos
Hipocampo/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Prolactina/farmacologia , Receptores da Prolactina/metabolismo , Análise de Variância , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Agonistas de Aminoácidos Excitatórios/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/toxicidade , Oligonucleotídeos/farmacologia , Prolactina/genética , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores da Prolactina/genética
12.
J Anim Sci ; 93(10): 4692-701, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26523562

RESUMO

Interspecies pregnancies between closely related species are usually performed in livestock to obtain improved and enriched offspring. Indeed, different hybrids have been obtained for research purposes since many years ago, and the maternal-fetal interactions have been studied as a possible strategy for species preservation. The aim of this study was to characterize by physiological and molecular approaches the interspecies pregnancy between bighorn sheep () and domestic sheep (). Hybrids were obtained by artificial insemination; the blood pressure and protein urine levels were measured during the last two-thirds of gestation. After parturition, offspring and placentas were weighed and measured and cotyledons were counted and weighed and their surface area determined. Plasma samples were obtained between wk 8 and 21 of gestation to assess progesterone (P4), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF) levels and cell-free RNA was isolated during the same period to assess hypoxia-inducible factor-1 α (α) gene expression. Hybrid and normal pregnancies were analyzed using physiological and molecular parameters during the last two-thirds of gestation (wk 8-21). The results show that during the measurement period, ewes with a hybrid pregnancy presented normal blood pressure and no alteration in urinary protein content. However, compared with sheep with a normal pregnancy, those with a hybrid pregnancy had a decrease in fetal and placental growth as well as in the cotyledonary surface area. Furthermore, in the hybrid group, there was placental insufficiency, characterized by a decrease in P4 production, as well as indications of endothelial dysfunction, characterized an increase in plasma levels of VEGF and PlGF as well as in plasma gene expression of α. Overall, the results indicate that hybrids of and presented intrauterine growth restriction, essentially due to altered endothelial function and chronic placental insufficiency. Further studies are necessary to overcome this primary placental dysfunction and thus obtain improved offspring for future molecular and genomic evaluations.


Assuntos
Retardo do Crescimento Fetal/veterinária , Doenças dos Ovinos/patologia , Carneiro da Montanha/genética , Carneiro Doméstico/genética , Animais , Feminino , Desenvolvimento Fetal/genética , Retardo do Crescimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Hibridização Genética , Placenta/irrigação sanguínea , Fator de Crescimento Placentário , Gravidez , Proteínas da Gravidez , Progesterona/metabolismo , Ovinos , Doenças dos Ovinos/genética , Fator A de Crescimento do Endotélio Vascular/genética
13.
Eur J Obstet Gynecol Reprod Biol ; 171(1): 67-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23993131

RESUMO

OBJECTIVES: To analyze the expression of protein markers related to cell proliferation and death, as well as oestrogen and progesterone receptors in the endometrium of infertile women with hypothalamic-pituitary dysfunction treated with clomiphene citrate (CC) or recombinant follicle-stimulating hormone (rFSH), and compare them with ovulatory women. STUDY DESIGN: The study included 12 control ovulatory women and 29 anovulatory women, 19 of whom underwent ovulation induction with CC (n = 12) or rFSH (n = 5). Endometrial biopsies were obtained by Pipelle during the mid-secretory phase. Samples were stained with haematoxylin and eosin. Immunohistochemistry of proteins related to cell proliferation and cell death, as well as steroid receptors, was undertaken, and apoptosis was determined using TUNEL analysis. RESULTS: Immunohistochemical analysis of Ki67 expression showed significantly higher expression in the glandular epithelium of ovulatory women compared with the other groups. Glandular oestrogen receptor α expression was significantly lower in rFSH-treated women compared with ovulatory women. The number of apoptotic cells, Bax expression and progesterone receptor expression were similar in all groups. In contrast, Bcl-2 expression was significantly lower in the glandular epithelium of rFSH-treated women. CONCLUSIONS: In infertile women with hypothalamic-pituitary dysfunction, treatment with ovulation-inducing agents modifies the expression of proteins involved in cell proliferation and death, as well as the expression of steroid hormone receptors in the endometrium. These differences may help to explain, at the molecular level, the functionality of the endometrium during the implantation window, and may help to optimize pregnancy rates obtained with these treatments.


Assuntos
Clomifeno/uso terapêutico , Endométrio/metabolismo , Fármacos para a Fertilidade Feminina/uso terapêutico , Hormônio Foliculoestimulante/uso terapêutico , Infertilidade Feminina/metabolismo , Adulto , Morte Celular/fisiologia , Proliferação de Células , Receptor alfa de Estrogênio/biossíntese , Feminino , Humanos , Infertilidade Feminina/tratamento farmacológico , Fase Luteal/fisiologia , Indução da Ovulação , Receptores de Progesterona/biossíntese , Proteína X Associada a bcl-2/biossíntese
14.
J Neuroendocrinol ; 25(6): 519-27, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23356710

RESUMO

Motherhood induces a series of adaptations in the physiology of the female, including an increase of maternal brain plasticity and a reduction of cell damage in the hippocampus caused by kainic acid (KA) excitotoxicity. We analysed the role of lactation in glial activation in the hippocampal fields of virgin and lactating rats after i.c.v. application of 100 ng of KA. Immunohistochemical analysis for glial fibrillary acidic protein (GFAP) and ionised calcium binding adaptor molecule 1 (Iba-1), which are markers for astrocytes and microglial cell-surface proteins, respectively, revealed differential cellular responses to KA in lactating and virgin rats. A significant astrocyte and microglial response in hippocampal areas of virgin rats was observed 24 h and 72 h after KA. By contrast, no increase in either GFAP- or Iba-1-positive cells was observed in response to KA in the hippocampus of lactating rats. Western blot analysis of GFAP showed an initial decrease at 24 h after KA treatment, with an increase at 72 h in the whole hippocampus of virgin but not of lactating rats. The number of GFAP-positive cells was increased by lactation in the dentate gyrus of the hippocampus but not in CA1 and CA3 areas. The present results indicate that lactating rats exhibit diminished responses of astrocyte and microglial cells in the hippocampus to damage induced by KA, supporting the notion that the maternal hippocampus is resistant to excitotoxic insults.


Assuntos
Hipocampo/fisiologia , Lactação , Neuroglia/fisiologia , Animais , Western Blotting , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neuroglia/metabolismo , Gravidez , Ratos , Ratos Wistar
15.
Neuroscience ; 169(3): 1178-85, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20570717

RESUMO

We reported previously that lactation prevents the cell damage induced by kainic acid (KA) excitotoxicity in the CA1, CA3, and CA4 areas of the dorsal hippocampus compared to rats in diestrus phase, and hypothesize that pronounced fluctuations of hormones, such as ovarian steroids and prolactin (PRL), have a role in the neuroprotection of the dorsal hippocampus during lactation. PRL is thought to be involved in modulating neural excitability and seizure activity. To investigate actions of prolactin that minimize KA-induced cell damage in the hippocampus, female intact and ovariectomized (OVX) rats were treated for 4 days with a daily dose of 100 microg of prolactin or vehicle. On the third day of prolactin treatment, rats received a systemic dose of 7.5 mg/kg of KA and were sacrificed 48 h later. Immunostaining for Neu-N revealed a significant decrease in cell number in the CA1, CA3 and CA4 areas of intact or OVX, vehicle-treated rats after KA, whereas prolactin treatment prevented cell loss in the CA3 area of intact, and in the CA1, CA3, and CA4 of OVX rats. Fluoro-Jade C staining confirmed these observations. Kainate-induced seizure behavior progressed further in OVX rats, but was attenuated in prolactin-treated rats, both intact and OVX, compared to vehicle-treated rats. These data indicate that prolactin diminishes the damaging actions of excitotoxicity in the kainate model of epilepsy.


Assuntos
Hormônios Gonadais/fisiologia , Hipocampo/patologia , Ácido Caínico , Prolactina/fisiologia , Convulsões/patologia , Convulsões/fisiopatologia , Animais , Contagem de Células , Feminino , Hipocampo/efeitos dos fármacos , Ovariectomia , Prolactina/farmacologia , Ratos , Ratos Wistar , Convulsões/induzido quimicamente
16.
Arch Toxicol ; 81(9): 619-26, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17340120

RESUMO

Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 microM of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function.


Assuntos
Arsenitos/toxicidade , Queratina-18/biossíntese , Fígado/efeitos dos fármacos , Animais , Queratina-18/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , RNA Mensageiro/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
17.
J Endocrinol ; 187(2): 217-24, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16293769

RESUMO

Beta-cell apoptosis is responsible for the development of insulin-dependent diabetes mellitus in the streptozotocin (STZ) rat model. It has been demonstrated that steroid hormones possess antioxidant and protective antiapoptotic effects in many tissues. The aim of the present study was to investigate the early apoptotic damage induced by STZ in rat pancreas, and the effect of testosterone in preventing apoptosis of pancreatic beta cells. Intact and castrated adult male Wistar rats were subjected to a unique injection of STZ 60 mg/kg (body weight) in citrate buffer, and the kinetics of apoptosis in beta cells was assessed. Insulin and glucose were measured by RIA and a glucometer respectively, and in pancreatic tissue by immunohistochemistry. At 6 h after STZ injection, a marked increase in apoptotic beta cells was detected; however, glucose and insulin serum levels were not significantly different from the controls. The castrated animals presented higher percentages of apoptotic beta cells (65.75 +/- 5.42%) than intact males (20.6 +/- 4.38%) and castrated, testosterone-substituted males (30.66 +/- 1.38%). The decrease in apoptotic beta cells induced by testosterone was reversed by the antiandrogen flutamide (67.69 +/- 3.45%). The overall results indicate that early apoptotic damage produced by STZ in castrated animals was reversed by testosterone, suggesting that this hormone exerts a natural protective effect in rat pancreas. This effect could help to explain some sexual differences in diabetes mellitus incidence in man, reinforcing the idea that new approaches in steroid hormone therapies should be considered for treatment of this disease.


Assuntos
Alquilantes/toxicidade , Diabetes Mellitus Tipo 1/prevenção & controle , Células Secretoras de Insulina/patologia , Estreptozocina/toxicidade , Testosterona/fisiologia , Animais , Apoptose , Glicemia/análise , Diabetes Mellitus Tipo 1/patologia , Imuno-Histoquímica/métodos , Marcação In Situ das Extremidades Cortadas , Insulina/análise , Insulina/sangue , Células Secretoras de Insulina/química , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Orquiectomia , Ratos , Ratos Wistar , Testosterona/farmacologia , Fatores de Tempo
18.
Parasitology ; 129(Pt 2): 233-43, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15376782

RESUMO

Homologues of c-fos and c-jun from total DNA of Taenia crassiceps and Taenia solium were cloned and sequenced. The amino acid alignment analysis revealed that c-fos DNAs from T. crassiceps and T. solium were highly homologous (96%), and both have high homology compared to several mammalian c-fos proteins (93% to mouse, 96% to rat and 86% to human). The c-jun protein alignment showed higher homology (T. crassiceps and T. solium have 98%), when compared with mouse, rat and human, being 92%, 98% and 93% respectively. RT-PCR amplification of the parasite's total RNA, showed that T. crassiceps expressed both AP-1 complex genes, while T. solium only expressed c-fos. Southern blot hybridization analysis confirmed the true origin of each amplified gene. AP-1 transcription gene expression is regulated by oestradiol in the same fashion as their mammalian counterparts only in T. crassiceps. To study if AP-1 genes are involved in a physiological function of the cyst, reproduction was studied in vitro. Oestradiol treatment stimulated reproduction in T. crassiceps but not in T. solium cysticerci. This is the first report of the detection and functionality of AP-1 transcription factor genes in any species of helminth parasite.


Assuntos
Genes fos/genética , Genes jun/genética , Taenia solium/genética , Teníase/parasitologia , Fator de Transcrição AP-1/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Southern Blotting , Estradiol/farmacologia , Regulação da Expressão Gênica , Dados de Sequência Molecular , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Taenia solium/crescimento & desenvolvimento , Taenia solium/fisiologia , Fator de Transcrição AP-1/biossíntese , Fator de Transcrição AP-1/fisiologia
19.
Life Sci ; 75(18): 2167-80, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15325843

RESUMO

Alloxan has been widely used to produce experimental diabetes mellitus syndrome. This compound causes necrosis of pancreatic beta-cells and, as is well known, induces oxidant free radicals which play a relevant role in the etiology and pathogenesis of both experimental and human diabetes mellitus. Previously we have reported hypoglycemic and antilipoperoxidative actions of silymarin in serum and pancreatic tissue respectively. The aim of this study was to test whether silymarin could reduce the hyperglycemia and revert the pancreatic damage in alloxan treated rats, tested with silymarin in two protocols: using both compounds simultaneously for four or eight doses, or using the compound 20 days after alloxan administration for 9 weeks. Serum glucose and insulin were determined, and pancreatic fragments were used for histology and insulin immunohistochemistry. Pancreatic islets were isolated to assess insulin and Pdx1 mRNA expression by RT-PCR. Our results showed that 72 hours after alloxan administration, serum glucose increased and serum insulin decreased significantly, whereas pancreatic tissue presented morphological abnormalities such as islet shrinkage, necrotic areas, loss of cell organization, widespread lipoid deposits throughout the exocrine tissue, and loss of beta cells, but insulin and glucagon immunoreactivity was scattered if any. In contrast the pancreatic tissue and both insulin and glucose serum levels of rats treated with silymarin were similar to those of control animals. In addition, insulin and glucagon immunoreactive cells patterns in Langerhans islets were also normal, and normal insulin and Pdx1 mRNA expression patterns were detected during pancreatic recovery in Langerhans islets. The overall results suggest that silymarin induces pancreatic function recovery demonstrated by insulin and glucagon expression protein and normoglycemia after alloxan pancreatic damage in rats.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Proteínas de Homeodomínio , Pâncreas/fisiopatologia , Substâncias Protetoras/uso terapêutico , Silimarina/uso terapêutico , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Imuno-Histoquímica , Insulina/sangue , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/fisiopatologia , Masculino , Pâncreas/patologia , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida , Transativadores/biossíntese , Transativadores/genética
20.
Parasitology ; 128(Pt 3): 343-51, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15074883

RESUMO

Experimental intraperitoneal Taenia crassiceps cysticercosis in mice exhibits distinct genetical, immunological and endocrinological features possibly resulting from the complex interactive network of their physiological systems. Very notable is the tendency of parasites to grow faster in hosts of the female sex. It is also remarkable in the feminization process that the infection induces in chronically infected male mice, characterized by their estrogenization, deandrogenization and loss of sexual and aggressive patterns of behaviour. The proto-oncogene c-fos is a sex steroid-regulated transcription factor gene, expressed basally and upon stimulation by many organisms. In the CNS of rodents, c-fos is found expressed in association to sexual stimulation and to various immunological and stressful events. Hence, we suspected that changes in c-fos expression in the brain could be involved in the feminization of the infected male mice. Indeed, it was found that c-fos expression increased at different times during infection in the hypothalamus, hippocampus, less so in the preoptic area and cortex, and not in several other organs. The significant and distinctive regional changes of c-fos in the CNS of infected mice indicate that the brain of the host senses intraperitoneal cysticercosis and may also announce its active participation in the regulation of the host-parasite relationship. Possibly, the host's CNS activity is involved in the network that regulates the estrogenization and deandrogenization observed in the chronically infected male mice, as well as in the behavioural and immunological peculiarities observed in this parasitic infection.


Assuntos
Encéfalo/fisiologia , Cisticercose/genética , Estradiol/sangue , Feminização/parasitologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Taenia/crescimento & desenvolvimento , Testosterona/sangue , Animais , Cisticercose/metabolismo , Cisticercose/parasitologia , Feminização/genética , Feminização/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peritônio/parasitologia , Proteínas Proto-Oncogênicas c-fos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Taenia/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...