Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 14: 302-315, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37036756

RESUMO

BACKGROUND: Overexpression of metabotropic glutamate receptor 1 (GRM1) has been implicated in the pathogenesis of multiple cancers. Riluzole, an inhibitor of glutamate release, showed synergistic antitumor activity in combination with the multi-kinase inhibitor sorafenib in preclinical models. This phase I trial identified the toxicity profile, dose-limiting toxicities, maximum tolerated dose (MTD), and pharmacokinetic and pharmacodynamic properties of riluzole combined with sorafenib in patients with advanced cancers. PATIENTS AND METHODS: Patients with refractory solid tumors were enrolled utilizing a 3+3 dose-escalation design. Riluzole was given at 100 mg PO BID in combination with sorafenib, beginning at 200 mg PO daily and escalating in 200 mg increments per level in 28-day cycles. Restaging evaluations were performed every 2 cycles. RESULTS: 35 patients were enrolled over 4 dose levels. The MTD was declared at dose level 3 (riluzole: 100 mg PO BID; sorafenib: 400 mg AM/200 mg PM). Pharmacokinetic analyses did not reveal definitive evidence of drug-drug interactions. Consistent decreases in phospho-forms of ERK and AKT in tumor tissue analyses with accompanying decrease in GRM1 expression and increase in pro-apoptotic BIM suggest target engagement by the combination. Best responses included a partial response in 1 (2.9%) patient with pancreatic acinar cell carcinoma with a KANK4-RAF1 fusion, and stable disease in 11 (36%) patients. CONCLUSION: Combination therapy with riluzole and sorafenib was safe and tolerable in patients with advanced solid tumors. The partial response in a patient with a RAF1 fusion suggests that further exploration in a genomically selected cohort may be warranted.


Assuntos
Neoplasias , Neoplasias Pancreáticas , Humanos , Sorafenibe/uso terapêutico , Riluzol/efeitos adversos , Niacinamida/uso terapêutico , Compostos de Fenilureia/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias/etiologia , Neoplasias Pancreáticas/tratamento farmacológico , Dose Máxima Tolerável
2.
Melanoma Res ; 30(3): 303-308, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31855905

RESUMO

Our group described the oncogenic potential of a normal neuronal receptor, metabotropic glutamate receptor 1 (GRM1/mGluR1, gene/protein), when aberrantly expressed in melanocytes led to cell transformation in vitro and spontaneous metastatic tumors in vivo. Earlier, we demonstrated the accumulation of phosphorylated histone H2AX (γH2AX), a marker for DNA damage when mGluR1-expressing melanoma cells were treated with a functional inhibitor, riluzole. The precise mechanisms on how riluzole induces DNA damage in these cells are unknown. In an attempt to begin to identify possible DNA repair pathways that may be involved in riluzole-induced DNA damage, we took advantage of specific inhibitors to two well-known DNA repair pathways, homologous recombination and nonhomologous end joining (NHEJ) repair pathways. Using flow cytometry and a fluorescent antibody to γH2AX, our results demonstrate that NHEJ is likely to be the preferred DNA repair pathway to restore DNA double-stranded breaks induced by riluzole in mGluR1-expressing melanoma cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Melanoma , Riluzol/farmacologia , Neoplasias Cutâneas , Linhagem Celular Tumoral , Humanos
3.
Oncotarget ; 9(5): 5861-5875, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29464040

RESUMO

Our laboratory previously showed that ectopic expression of Grm1 is sufficient to induce spontaneous melanoma formation with 100% penetrance in transgenic mouse model, TG-3, which harbors wild-type BRaf. Studies identified Grm1 expression in human melanoma cell lines and primary to secondary metastatic melanoma biopsies having wild-type or mutated BRaf, but not in normal melanocytes or benign nevi. Grm1 expression was detected in tissues from mice genetically engineered with inducible melanocyte-specific BRafV600E. Additionally, stable clones derived from introduction of exogenous BRafV600E in mouse melanocytes also showed Grm1 expression, which was not detected in the parental or empty vector-derived cells, suggesting that expression of BRafV600E could activate Grm1 expression. Despite aberrant Grm1 expression in the inducible, melanocyte-specific BRafV600E mice, no tumors formed. However, in older mice, the melanocytes underwent senescence, as demonstrated previously by others. It was proposed that upregulated p15 and TGFß contributed to the senescence phenotype. In contrast, in older TG-3 mice the levels of p15 and TGFß remained the same or lower. Taken together, these results suggest the temporal regulation on the expression of "oncogenes" such as Grm1 or BRafV600E is critical in the future fate of the cells. If BRafV600E is turned on first, Grm1 expression can be induced, but this is not sufficient to result in development of melanoma; the cells undergo senescence. In contrast, if ectopic expression of Grm1 is turned on first, then regardless of wild-type or mutated BRaf in the melanocytes melanoma development is the consequence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...