Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 82: 95-103, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26164373

RESUMO

It has been previously reported that Gcr1 differentially controls growth and sugar utilization in Saccharomyces cerevisiae and Kluyveromyces lactis, although the regulatory mechanisms causing activation of glycolytic genes are conserved (Neil et al., 2004). We have found that KlGCR1 deletion diminishes glucose consumption and ethanol production, but increases resistance to oxidative stress caused by H2O2, cadmium and arsenate, glucose 6P dehydrogenase activity, and the NADPH/NADP(+) and GSH/GSSG ratios in K. lactis. The gene KlZWF1 that encodes for glucose 6P dehydrogenase, the first enzyme in the pentose phosphate pathway, is transcriptionally regulated by KlGcr1. The high resistance to oxidative stress observed in the ΔKlgcr1 mutant strain, could be explained as a consequence of an increased flux of glucose through the pentose phosphate pathway. Since mitochondrial respiration decreases in the ΔKlgcr1 mutant (García-Leiro et al., 2010), the reoxidation of the NADPH, produced through the pentose phosphate pathway, has to be achieved by the reduction of other molecules implied in the defense against oxidative stress, like GSSG. The higher GSH/GSSG ratio in the mutant would explain its phenotype of increased resistance to oxidative stress.


Assuntos
Arseniatos/metabolismo , Cádmio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Peróxido de Hidrogênio/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Etanol/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Redes e Vias Metabólicas , NADP/metabolismo , Estresse Oxidativo/genética
2.
Biochim Biophys Acta ; 1774(9): 1227-35, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17689156

RESUMO

Several derivatives of the native Srb10 proteins from Saccharomyces cerevisiae and Kluyveromyces lactis, with removed selected motifs, have been constructed in order to test their role in Srb10p function. It has been demonstrated that the ATP binding site is necessary for repression of FLO11, CYC7 and SPI1. Yeast Srb10p specific motifs CM-I and CM-II, outside the kinase domain, are also necessary to complement two mutant phenotypes in S. cerevisiae Deltasrb10 strains, the failure to growth in galactose at 37 degrees C and flocculation. They are also required to keep transcriptional repression of FLO11 in non-flocculants, and for aerobic repression of CYC7 and SPI1. Two-hybrid analyses revealed that, in Srb10p derivatives, the absence of these motifs decreases the interaction of Srb10p with its cyclin partner Srb11p and with the component Tup1p of the general co-repressor complex Tup1p-Ssn6p.


Assuntos
Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Quinase 8 Dependente de Ciclina , Ciclinas , Grupo dos Citocromos c/metabolismo , Kluyveromyces/química , Glicoproteínas de Membrana , Proteínas de Membrana/metabolismo , Alinhamento de Sequência , Fatores de Transcrição , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...