Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200158, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33813886

RESUMO

Parasites threaten all free-living organisms, including molluscs. Understanding the evolution of immune defence traits in natural host populations is crucial for predicting their long-term performance under continuous infection risk. Adaptive trait evolution requires that traits are subject to selection (i.e. contribute to organismal fitness) and that they are heritable. Despite broad interest in the evolutionary ecology of immune activity in animals, the understanding of selection on and evolutionary potential of immune defence traits is far from comprehensive. For instance, empirical observations are only rarely in line with theoretical predictions of immune activity being subject to stabilizing selection. This discrepancy may be because ecoimmunological studies can typically cover only a fraction of the complexity of an animal immune system. Similarly, molecular immunology/immunogenetics studies provide a mechanistic understanding of immunity, but neglect variation that arises from natural genetic differences among individuals and from environmental conditions. Here, we review the current literature on natural selection on and evolutionary potential of immune traits in animals, signal how merging ecological immunology and genomics will strengthen evolutionary ecological research on immunity, and indicate research opportunities for molluscan gastropods for which well-established ecological understanding and/or 'immune-omics' resources are already available. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Assuntos
Evolução Biológica , Gastrópodes/genética , Gastrópodes/imunologia , Variação Genética/imunologia , Imunidade Inata , Seleção Genética/imunologia , Animais , Genômica
2.
BMC Genomics ; 22(1): 144, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648459

RESUMO

BACKGROUND: Host immune function can contribute to numerous ecological/evolutionary processes. Ecoimmunological studies, however, typically use one/few phenotypic immune assays and thus do not consider the complexity of the immune system. Therefore, "omics" resources that allow quantifying immune activity across multiple pathways are needed for ecoimmunological models. We applied short-read based RNAseq (Illumina NextSeq 500, PE-81) to characterise transcriptome profiles of Lymnaea stagnalis (Gastropoda), a multipurpose model snail species. We used a genetically diverse snail stock and exposed individuals to immune elicitors (injury, bacterial/trematode pathogens) and changes in environmental conditions that can alter immune activity (temperature, food availability). RESULTS: Immune defence factors identified in the de novo assembly covered elements broadly described in other gastropods. For instance, pathogen-recognition receptors (PRR) and lectins activate Toll-like receptor (TLR) pathway and cytokines that regulate cellular and humoral defences. Surprisingly, only modest diversity of antimicrobial peptides and fibrinogen related proteins were detected when compared with other taxa. Additionally, multiple defence factors that may contribute to the phenotypic immune assays used to quantify antibacterial activity and phenoloxidase (PO)/melanisation-type reaction in this species were found. Experimental treatments revealed factors from non-self recognition (lectins) and signalling (TLR pathway, cytokines) to effectors (e.g., antibacterial proteins, PO enzymes) whose transcription depended on immune stimuli and environmental conditions, as well as components of snail physiology/metabolism that may drive these effects. Interestingly, the transcription of many factors (e.g., PRR, lectins, cytokines, PO enzymes, antibacterial proteins) showed high among-individual variation. CONCLUSIONS: Our results indicate several uniform aspects of gastropod immunity, but also apparent differences between L. stagnalis and some previously examined taxa. Interestingly, in addition to immune defence factors that responded to immune elicitors and changes in environmental conditions, many factors showed high among-individual variation across experimental snails. We propose that such factors are highly important to be included in future ecoimmunological studies because they may be the key determinants of differences in parasite resistance among individuals both within and between natural snail populations.


Assuntos
Perfilação da Expressão Gênica , Lymnaea , Transcriptoma , Animais , Evolução Biológica , Lymnaea/genética , Lymnaea/metabolismo , Monofenol Mono-Oxigenase
3.
Front Genet ; 11: 565854, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193650

RESUMO

Empirical evidence is limited on whether allopolyploid species combine or merge parental adaptations to broaden habitats. The allopolyploid Arabidopsis kamchatica is a hybrid of the two diploid parents Arabidopsis halleri and Arabidopsis lyrata. A. halleri is a facultative heavy metal hyperaccumulator, and may be found in cadmium (Cd) and zinc (Zn) contaminated environments, as well as non-contaminated environments. A. lyrata is considered non-tolerant to these metals, but can be found in serpentine habitats. Therefore, the parents have adaptation to different environments. Here, we measured heavy metals in soils from native populations of A. kamchatica. We found that soil Zn concentration of nearly half of the sampled 40 sites was higher than the critical toxicity level. Many of the sites were near human construction, suggesting adaptation of A. kamchatica to artificially contaminated soils. Over half of the A. kamchatica populations had >1,000 µg g-1 Zn in leaf tissues. Using hydroponic treatments, most genotypes accumulated >3,000 µg g-1 Zn, with high variability among them, indicating substantial genetic variation in heavy metal accumulation. Genes involved in heavy metal hyperaccumulation showed an expression bias in the A. halleri-derived homeolog in widely distributed plant genotypes. We also found that two populations were found growing on serpentine soils. These data suggest that A. kamchatica can inhabit a range of both natural and artificial soil environments with high levels of ions that either of the parents specializes and that it can accumulate varying amount of heavy metals. Our field and experimental data provide a compelling example of combining genetic toolkits for soil adaptations to expand the habitat of an allopolyploid species.

4.
Mol Biol Evol ; 33(11): 2781-2800, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27413047

RESUMO

Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and of the nonaccumulator Arabidopsis lyrata We found that A. kamchatica retained the ability to hyperaccumulate zinc from A. halleri and grows in soils with both low and high metal content. Hyperaccumulation of zinc by A. kamchatica was reduced to about half of A. halleri, but is 10-fold greater than A. lyrata Homeologs derived from A. halleri had significantly higher levels of expression of genes such as HEAVY METAL ATPASE4 (HMA4), METAL TRANSPORTER PROTEIN1 and other metal ion transporters than those derived from A. lyrata, which suggests cis-regulatory differences. A. kamchatica has on average about half the expression of these genes compared with A. halleri due to fixed heterozygosity inherent in allopolyploids. Zinc treatment significantly changed the ratios of expression of 1% of homeologous pairs, including genes putatively involved in metal homeostasis. Resequencing data showed a significant reduction in genetic diversity over a large genomic region (290 kb) surrounding the HMA4 locus derived from the A. halleri parent compared with the syntenic A. lyrata-derived region, which suggests different evolutionary histories. We also estimated that three A. halleri-derived HMA4 copies are present in A. kamchatica Our findings support a transcriptomic model in which environment-related transcriptional patterns of both parents are conserved but attenuated in the allopolyploids.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Zinco/metabolismo , Adaptação Fisiológica/genética , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Dosagem de Genes , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica/métodos , Homeostase , Poliploidia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...