Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 220: 116010, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154544

RESUMO

Combined antiretroviral therapy (cART) has been associated with increased body weight accompanied by metabolic alterations in people living with human immunodeficiency virus (PLWH). To gain insight into the combined effects of cART components on adipocyte dysfunction, we assessed whether and how treatment of human adipocytes with dolutegravir (DTG) and the nucleotide-analog reverse-transcriptase inhibitors (NRTIs), tenofovir alafenamide (TAF) and tenofovir disoproxil fumarate (TDF), alone and in combination, altered biological processes related to adipose tissue dysfunction. DTG, TAF, and TDF were applied to human Simpson-Golabi-Behmel syndrome (SGBS) adipose cells during differentiation (day 10) and ensuing differentiation (day 14). Expression of selected marker genes was determined by qPCR, the release of adipokines and inflammatory cytokines to the culture media was assessed, and cell respiration was measured. Adipogenesis was not altered by the combined treatment of human adipocytes. However, DTG at the highest dose repressed adipogenesis marker genes expression, and TAF and TDF appeared to mitigate this effect. DTG repressed the expression of adiponectin and the release of adiponectin and leptin in differentiating adipocytes, and these effects were mantained in combination with TAF and TDF. DTG plus TAF or TDF on human adipocytes enhanced inflammation and stress and increased the release of proinflammatory cytokines to the culture media. Together, our results show that combined therapy with these drugs can alter inflammation, cellular stress, and fibrosis in human adipocytes. These findings may improve our understanding and management of the effects of cART on body adiposity and metabolic dysregulation in PLWH.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Compostos Heterocíclicos com 3 Anéis , Oxazinas , Piperazinas , Piridonas , Humanos , Tenofovir/uso terapêutico , Adiponectina , Alanina/uso terapêutico , Adenina , Antirretrovirais , Infecções por HIV/tratamento farmacológico , Adipócitos , Inflamação/tratamento farmacológico , Meios de Cultura , Citocinas/genética , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico
2.
J Intern Med ; 284(5): 492-504, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29923291

RESUMO

Many of the comorbidities of obesity, including type 2 diabetes and cardiovascular diseases, are related to the low-grade chronic inflammation of white adipose tissue. Under white adipocyte stress, local infiltration of immune cells and enhanced production of pro-inflammatory cytokines together reduce metabolic flexibility and lead to insulin resistance in obesity. Whereas white adipocytes act in energy storage, brown and beige adipocytes specialize in energy expenditure. Brown and beige activity protects against obesity and associated metabolic disorders, such as hyperglycaemia and hyperlipidaemia. Compared to white fat, brown adipose tissue depots are less susceptible to developing local inflammation in response to obesity; however, strong obesogenic insults ultimately induce a locally pro-inflammatory environment in brown fat. This condition directly alters the thermogenic activity of brown fat by impairing its energy expenditure mechanism and uptake of glucose for use as a fuel substrate. Pro-inflammatory cytokines also impair beige adipogenesis, which occurs mainly in subcutaneous adipose tissue. There is evidence that inflammatory processes occurring in perivascular adipose tissues alter their brown-versus-white plasticity, impair the extent of browning in these depots and favour the local release of vasculature damaging signals. In summary, the targeting of brown and beige adipose tissues by pro-inflammatory signals and the subsequent impairment of their thermogenic and metabolite draining activities appears to represent obesity-driven disturbances that contribute to metabolic syndrome and cardiovascular alterations in obesity.


Assuntos
Tecido Adiposo Bege/patologia , Tecido Adiposo Marrom/patologia , Inflamação/patologia , Doenças Metabólicas/patologia , Obesidade/patologia , Animais , Humanos , Inflamação/etiologia , Doenças Metabólicas/complicações , Obesidade/complicações
3.
Int J Obes (Lond) ; 40(10): 1591-1599, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27339605

RESUMO

BACKGROUND: Brown adipose tissue (BAT) thermogenesis is an adaptive process, essential for energy expenditure and involved in the control of obesity. Obesity is associated with abnormally increased autophagy in white adipose tissue. Autophagy has been proposed as relevant for brown-vs-white adipocyte differentiation; however, its role in the response of BAT to thermogenic activation is unknown. METHODS: The effects of thermogenic activation on autophagy in BAT were analyzed in vivo by exposing mice to 24 h cold condition. The effects of norepinephrine (NE), cAMP and modulators of lysosomal activity were determined in differentiated brown adipocytes in the primary culture. Transcript expression was quantified by real-time PCR, and specific proteins were determined by immunoblot. Transmission electron microscopy, as well as confocal microscopy analysis after incubation with specific antibodies or reagents coupled to fluorescent emission, were performed in BAT and cultured brown adipocytes, respectively. RESULTS: Autophagy is repressed in association with cold-induced thermogenic activation of BAT in mice. This effect was mimicked by NE action in brown adipocytes, acting mainly through a cAMP-dependent protein kinase A pathway. Inhibition of autophagy in brown adipocytes leads to an increase in UCP1 protein and uncoupled respiration, suggesting a repressing role for autophagy in relation to the activity of BAT thermogenic machinery. Under basal conditions, brown adipocytes show signs of active lipophagy, which is suppressed by a cAMP-mediated thermogenic stimulus. CONCLUSIONS: Our results show a noradrenergic-mediated inverse relationship between autophagy and thermogenic activity in BAT and point toward autophagy repression as a component of brown adipocyte adaptive mechanisms to activate thermogenesis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Autofagia/fisiologia , Obesidade/metabolismo , Termogênese/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
4.
Int J Obes Suppl ; 5(Suppl 1): S40-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27152175

RESUMO

The thermogenic activity of brown adipose tissue (BAT) in the organism is tightly regulated through different processes, from short-term induction of uncoupling protein-1-mediated mitochondrial proton conductance to complex processes of BAT recruitment, and appearance of the beige/brite adipocytes in white adipose tissue (WAT), the so-called browning process. The sympathetic nervous system is classically recognized as the main mediator of BAT activation. However, novel factors capable of activating BAT through non-sympathetic mechanisms have been recently identified. Among them are members of the bone morphogenetic protein family, with likely autocrine actions, and activators of nuclear hormone receptors, especially vitamin A derivatives. Multiple endocrine factors released by peripheral tissues that act on BAT have also been identified. Some are natriuretic peptides of cardiac origin, whereas others include irisin, originating in skeletal muscle, and fibroblast growth factor-21, mainly produced in the liver. These factors have cell-autonomous effects in brown adipocytes, but indirect effects in vivo that modulate sympathetic activity toward BAT cannot be excluded. Moreover, these factors can affect to different extents such as the activation of existing BAT, the induction of browning in WAT or both. The identification of non-sympathetic controllers of BAT activity is of special biomedical interest as a prerequisite for developing pharmacological tools that influence BAT activity without the side effects of sympathomimetics.

5.
Clin Endocrinol (Oxf) ; 76(6): 816-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21883346

RESUMO

OBJECTIVES: Type 2 familial partial lipodystrophy (FPLD2) is a rare adipose tissue (AT) disease caused by mutations in LMNA, in which lipomas appear occasionally. In this study, we aimed to histologically characterize FPLD2-associated lipomatosis and study the expression of genes and proteins involved in cell cycle control, mitochondrial function, inflammation and adipogenesis. DESIGN AND PATIENTS: One lipoma and perilipoma fat from each of four subjects with FPLD2 and 10 control subjects were analysed by optical microscopy. The presence of inflammatory cells was evaluated by immunohistochemistry. Real-time RT-PCR and Western blot were used to evaluate gene and protein levels. RESULTS: Adipocytes from lipodystrophic patients were significantly larger than those of controls, in both the lipomas and perilipoma fat. Lipodystrophic AT exhibited CD68(+) macrophages and CD3(+) lymphocytes infiltration. TP53 expression was reduced in all types of lipomas. At protein level, C/EBPß, p53 and pRb were severely disturbed in both lipodystrophic lipomas and perilipoma fat coming from lipoatrophic areas, whereas the expression of CEBPα was normal. Mitochondrial function genes were less expressed in lipoatrophic fat. In both lipomas and perilipoma fat from lipoatrophic areas, the expression of adipogenes was lower than controls. CONCLUSIONS: Even in lipomas, the adipogenic machinery is impaired in lipodystrophic fat coming from lipoatrophic regions in FPLD2, although the histological phenotype is near-normal, exhibiting low-grade inflammatory features. Our results suggest that the p53 pathway and some adipogenic proteins, such as CEBPα, could contribute to the maintenance of this near normal phenotype in the remnant AT present in these patients.


Assuntos
Tecido Adiposo/metabolismo , Lamina Tipo A/genética , Lipodistrofia Parcial Familiar/genética , Tecido Adiposo/citologia , Adulto , Idoso , Western Blotting , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Técnicas In Vitro , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...