Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Immunol Immunopathol ; 268: 110703, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154260

RESUMO

Bovines infected by bovine leukemia virus (BLV) are characterized by presenting low proviral load (LPL) or high proviral load (HPL). It is reported that animals with HPL in peripheral blood mononuclear cells (PBMCs) present a decrease in apoptosis, an increase in viability and the proliferation rate, while animals that maintain an LPL have an intrinsic ability to control the infection, presenting an increased apoptosis rate of their PBMCs. However, there is little information on the effect of BLV on these mechanisms when the virus infects somatic milk cells (SC). This study investigates the mechanisms underlying apoptosis in milk and blood from BLV-infected animals with HPL and LPL. Relative levels of mRNA of tumor necrosis factor-α (TNF-α), TNF receptor 1 (TNF-RI), TNF receptor 2 (TNF-RII), anti-apoptotic B-cell lymphoma 2 protein (Bcl-2), and pro-apoptotic Bcl-2-like protein 4 (Bax) were measured in SC and PBMCs using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay. A significant decrease in the expression of TNF-α in SC from HPL animals vs non-infected bovines was observed, but the infection in SC with BLV did not show a modulation on the expression of TNF receptors. A significant increase in TNF-RI expression in PBMCs from HPL bovines compared to LPL bovines was observed. No significant differences in PBMCs between HPL and LPL compared to non-infected animals concerning TNF-α, TNF-RI, and TNF-RII expression were found. There was a significant increase of both Bcl-2 and Bax in SC from LPL compared to non-infected bovines, but the Bcl-2/Bax ratio showed an anti-apoptotic profile in LPL and HPL bovines compared to non-infected ones. Reduced mRNA expression levels of Bax were determined in the PBMCs from HPL compared to LPL subjects. In contrast, BLV-infected bovines did not differ significantly in the mRNA expression of Bax compared to non-infected bovines. Our data suggest that the increased mRNA expression of Bax corresponds to the late lactation state of bovine evaluated and the exacerbated increase of mRNA expression of Bcl-2 may be one of the mechanisms for the negative apoptosis regulation in the mammary gland induced by BLV infection. These results provide new insights into the mechanism of mammary cell death in HPL and LPL BLV-infected bovine mammary gland cells during lactation.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Feminino , Apoptose , Proteína X Associada a bcl-2/metabolismo , Proliferação de Células , Leucócitos Mononucleares/metabolismo , Leite , Provírus/genética , Provírus/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37292867

RESUMO

Background: Circadian rhythms time physiological and behavioral processes to 24-hour cycles. It is generally assumed that most cells contain self-sustained circadian clocks that drive circadian rhythms in gene expression that ultimately generating circadian rhythms in physiology. While those clocks supposedly act cell autonomously, current work suggests that in Drosophila some of them can be adjusted by the brain circadian pacemaker through neuropeptides, like the Pigment Dispersing Factor (PDF). Despite these findings and the ample knowledge of the molecular clockwork, it is still unknown how circadian gene expression in Drosophila is achieved across the body. Results: Here, we used single-cell and bulk RNAseq data to identify cells within the fly that express core-clock components. Surprisingly, we found that less than a third of the cell types in the fly express core-clock genes. Moreover, we identified Lamina wild field (Lawf) and Ponx-neuro positive (Poxn) neurons as putative new circadian neurons. In addition, we found several cell types that do not express core clock components but are highly enriched for cyclically expressed mRNAs. Strikingly, these cell types express the PDF receptor (Pdfr), suggesting that PDF drives rhythmic gene expression in many cell types in flies. Other cell types express both core circadian clock components and Pdfr, suggesting that in these cells, PDF regulates the phase of rhythmic gene expression. Conclusions: Together, our data suggest three different mechanisms generate cyclic daily gene expression in cells and tissues: canonical endogenous canonical molecular clock, PDF signaling-driven expression, or a combination of both.

3.
BMC Biol ; 20(1): 233, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36266680

RESUMO

BACKGROUND: Lipid homeostasis is an evolutionarily conserved process that is crucial for energy production, storage and consumption. Drosophila larvae feed continuously to achieve the roughly 200-fold increase in size and accumulate sufficient reserves to provide all energy and nutrients necessary for the development of the adult fly. The mechanisms controlling this metabolic program are poorly understood. RESULTS: Herein we identified a highly conserved gene, orsai (osi), as a key player in lipid metabolism in Drosophila. Lack of osi function in the larval fat body, the regulatory hub of lipid homeostasis, reduces lipid reserves and energy output, evidenced by decreased ATP production and increased ROS levels. Metabolic defects due to reduced Orsai (Osi) in time trigger defective food-seeking behavior and lethality. Further, we demonstrate that downregulation of Lipase 3, a fat body-specific lipase involved in lipid catabolism in response to starvation, rescues the reduced lipid droplet size associated with defective orsai. Finally, we show that osi-related phenotypes are rescued through the expression of its human ortholog ETFRF1/LYRm5, known to modulate the entry of ß-oxidation products into the electron transport chain; moreover, knocking down electron transport flavoproteins EtfQ0 and walrus/ETFA rescues osi-related phenotypes, further supporting this mode of action. CONCLUSIONS: These findings suggest that Osi may act in concert with the ETF complex to coordinate lipid homeostasis in the fat body in response to stage-specific demands, supporting cellular functions that in turn result in an adaptive behavioral response.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Metabolismo dos Lipídeos , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Corpo Adiposo/metabolismo , Flavoproteínas/metabolismo , Larva , Lipase/genética , Lipase/metabolismo , Metabolismo dos Lipídeos/genética , Lipídeos , Espécies Reativas de Oxigênio/metabolismo
4.
Neuron ; 110(13): 2044-2046, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35797958

RESUMO

The drive to sleep is strongly influenced by time of day, with temporal information conveyed through the circadian clock. In pursuit of the neural mechanisms underlying this process, in this issue of Neuron, Sun et al. identify a novel circuit that links circadian output neurons to sleep-promoting neurons within the mushroom bodies.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Sono/fisiologia
5.
J Neurosci ; 41(40): 8338-8350, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34429376

RESUMO

Rhythmic rest-activity cycles are controlled by an endogenous clock. In Drosophila, this clock resides in ∼150 neurons organized in clusters whose hierarchy changes in response to environmental conditions. The concerted activity of the circadian network is necessary for the adaptive responses to synchronizing environmental stimuli. Thus far, work was devoted to unravel the logic of the coordination of different clusters focusing on neurotransmitters and neuropeptides. We further explored communication in the adult male brain through ligands belonging to the bone morphogenetic protein (BMP) pathway. Herein we show that the lateral ventral neurons (LNvs) express the small morphogen decapentaplegic (DPP). DPP expression in the large LNvs triggered a period lengthening phenotype, the downregulation of which caused reduced rhythmicity and affected anticipation at dawn and dusk, underscoring DPP per se conveys time-of-day relevant information. Surprisingly, DPP expression in the large LNvs impaired circadian remodeling of the small LNv axonal terminals, likely through local modulation of the guanine nucleotide exchange factor Trio. These findings open the provocative possibility that the BMP pathway is recruited to strengthen/reduce the connectivity among specific clusters along the day and thus modulate the contribution of the clusters to the circadian network.SIGNIFICANCE STATEMENT The circadian clock relies on the communication between groups of so-called clock neurons to coordinate physiology and behavior to the optimal times across the day, predicting and adapting to a changing environment. The circadian network relies on neurotransmitters and neuropeptides to fine-tune connectivity among clock neurons and thus give rise to a coherent output. Herein we show that decapentaplegic, a ligand belonging to the BMP retrograde signaling pathway required for coordinated growth during development, is recruited by a group of circadian neurons in the adult brain to trigger structural remodeling of terminals on a daily basis.


Assuntos
Geradores de Padrão Central/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/biossíntese , Rede Nervosa/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster , Masculino
6.
Curr Biol ; 30(24): 5040-5048.e5, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33065014

RESUMO

Behavioral outputs arise as a result of highly regulated yet flexible communication among neurons. The Drosophila circadian network includes 150 neurons that dictate the temporal organization of locomotor activity; under light-dark (LD) conditions, flies display a robust bimodal pattern. The pigment-dispersing factor (PDF)-positive small ventral lateral neurons (sLNv) have been linked to the generation of the morning activity peak (the "M cells"), whereas the Cryptochrome (CRY)-positive dorsal lateral neurons (LNds) and the PDF-negative sLNv are necessary for the evening activity peak (the "E cells") [1, 2]. While each group directly controls locomotor output pathways [3], an interplay between them along with a third dorsal cluster (the DN1ps) is necessary for the correct timing of each peak and for adjusting behavior to changes in the environment [4-7]. M cells set the phase of roughly half of the circadian neurons (including the E cells) through PDF [5, 8-10]. Here, we show the existence of synaptic input provided by the evening oscillator onto the M cells. Both structural and functional approaches revealed that E-to-M cell connectivity changes across the day, with higher excitatory input taking place before the day-to-night transition. We identified two different neurotransmitters, acetylcholine and glutamate, released by E cells that are relevant for robust circadian output. Indeed, we show that acetylcholine is responsible for the excitatory input from E cells to M cells, which show preferential responsiveness to acetylcholine during the evening. Our findings provide evidence of an excitatory feedback between circadian clusters and unveil an important plastic remodeling of the E cells' synaptic connections.


Assuntos
Relógios Biológicos/fisiologia , Drosophila melanogaster/fisiologia , Locomoção/fisiologia , Terminações Pré-Sinápticas/metabolismo , Acetilcolina/metabolismo , Animais , Animais Geneticamente Modificados , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retroalimentação Fisiológica , Ácido Glutâmico/metabolismo , Masculino , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Fotoperíodo
7.
Mol Immunol ; 111: 136-144, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31054407

RESUMO

Production of antimicrobial peptides cathelicidins, interferons and cytokines is an important feature in airway epithelial host defense. The innate immune response to alpha-herpesvirus infection at the sites of primary replication has not been fully studied. Thus, the aim of this study was to determine the expression of innate immune components, cathelicidins, IFNß, TNFα and TNF receptors (TNFRI and TNFRII) during acute infection and reactivation of bovine herpesvirus type 1 (BoHV-1) and 5 (BoHV-5) in the respiratory tract and lymphoid tissue of their natural host. We found that BoHV infection modulates mainly the expression of BMAP28, a key cathelicidin in cattle. It was downregulated by both viruses in retropharyngeal lymph nodes of acutely infected-calves, and it was accompanied by a lower expression of IFNß, TNFα and TNFRI. BoHV-5 showed a pronounced role in the downregulation of BMAP28, even in nasal mucosa and lung. However, during reactivation, BoHV-5 upregulated both BMAP28 and IFNß in retropharyngeal lymph nodes. Acute replication induced also TNFα mRNA and protein synthesis, and expression of TNFRI and II was positively regulated during both acute infection and reactivation, particularly in the trachea. Moreover, BMAP27 was detected during BoHV-1 reactivation suggesting a potential role at this stage. Thus, cathelicidins are implicated in alpha-herpesvirus infections of the bovine respiratory system and the response is distinct during BoHV-1 and BoHV-5 acute infection and reactivation. This demonstrates that these viruses modulate differentially the components of innate immune response, possibly influencing their pathogenesis. This study provides an initial pilot analysis of factors that might be implicated in alpha-herpesvirus infection of the bovine respiratory system.


Assuntos
Catelicidinas/imunologia , Doenças dos Bovinos/imunologia , Infecções por Herpesviridae/imunologia , Herpesvirus Bovino 1/imunologia , Interferon beta/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Bovinos , Citocinas/imunologia , Infecções por Herpesviridae/veterinária , Imunidade Inata/imunologia , Projetos Piloto , RNA Mensageiro/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Regulação para Cima/imunologia
8.
Biol Open ; 8(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30530810

RESUMO

In the fruit fly, Drosophila melanogaster, the daily cycle of rest and activity is a rhythmic behavior that relies on the activity of a small number of neurons. The small ventral lateral neurons (sLNvs) are considered key in the control of locomotor rhythmicity. Previous work from our laboratory has showed that these neurons undergo structural remodeling on their axonal projections on a daily basis. Such remodeling endows sLNvs with the possibility to make synaptic contacts with different partners at different times throughout the day, as has been previously described. By using different genetic tools to alter membrane excitability of the sLNv putative postsynaptic partners, we tested their functional role in the control of locomotor activity. We also used optical imaging to test the functionality of these contacts. We found that these different neuronal groups affect the consolidation of rhythmic activity, suggesting that non-circadian cells are part of the circuit that controls locomotor activity. Our results suggest that new neuronal groups, in addition to the well-characterized clock neurons, contribute to the operations of the circadian network that controls locomotor activity in D. melanogaster.

9.
Exp Cell Res ; 362(2): 349-361, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29208460

RESUMO

RalGPS2 is a Ras-independent Guanine Nucleotide Exchange Factor (GEF) for RalA containing a PH domain and an SH3-binding region and it is involved in several cellular processes, such as cytokinesis, control of cell cycle progression, differentiation, cytoskeleton organization and rearrangement. Up to now, few data have been published regarding RalGPS2 role in cancer cells, and its involvement in bladder cancer is yet to be established. In this paper we demonstrated that RalGPS2 is expressed in urothelial carcinoma-derived 5637 cancer cells and is essential for cellular growth. These cells produces thin membrane protrusions that displayed the characteristics of actin rich tunneling nanotubes (TNTs) and here we show that RalGPS2 is involved in the formation of these cellular protrusions. In fact the overexpression of RalGPS2 or of its PH-domain increased markedly the number and the length of nanotubes, while the knock-down of RalGPS2 caused a strong reduction of these structures. Moreover, using a series of RalA mutants impaired in the interaction with different downstream components (Sec5, Exo84, RalBP1) we demonstrated that the interaction of RalA with Sec5 is required for TNTs formation. Furthermore, we found that RalGPS2 interacts with the transmembrane MHC class III protein leukocyte specific transcript 1 (LST1) and RalA, leading to the formation of a complex which promotes TNTs generation. These findings allow us to add novel elements to molecular models that have been previously proposed regarding TNTs formation.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/genética , Nanotubos , Neoplasias da Bexiga Urinária/genética , Proteínas ral de Ligação ao GTP/genética , Animais , Diferenciação Celular/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Domínios de Homologia à Plecstrina/genética , Neoplasias da Bexiga Urinária/patologia , Proteínas de Transporte Vesicular/genética , Domínios de Homologia de src/genética
10.
Physiology (Bethesda) ; 33(1): 50-62, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212892

RESUMO

Life is shaped by circadian clocks. This review focuses on how behavioral genetics in the fruit fly unveiled what is known today about circadian physiology. We will briefly summarize basic properties of the clock and focus on some clock-controlled behaviors to highlight how communication between central and peripheral oscillators defines their properties.


Assuntos
Comportamento Animal , Relógios Circadianos , Ritmo Circadiano , Drosophila melanogaster/genética , Animais , Regulação da Temperatura Corporal , Encéfalo/fisiologia , Comportamento Alimentar , Locomoção , Neurônios/fisiologia , Comportamento Social
11.
J Biol Rhythms ; 32(5): 380-393, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29098954

RESUMO

Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.


Assuntos
Ritmo Circadiano/genética , Genoma , Genômica , Estatística como Assunto/métodos , Bioestatística , Biologia Computacional/métodos , Genômica/estatística & dados numéricos , Humanos , Metabolômica , Proteômica , Software , Biologia de Sistemas
12.
Genetics ; 207(2): 593-607, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28801530

RESUMO

Circadian clocks organize the metabolism, physiology, and behavior of organisms throughout the day-night cycle by controlling daily rhythms in gene expression at the transcriptional and post-transcriptional levels. While many transcription factors underlying circadian oscillations are known, the splicing factors that modulate these rhythms remain largely unexplored. A genome-wide assessment of the alterations of gene expression in a null mutant of the alternative splicing regulator SR-related matrix protein of 160 kDa (SRm160) revealed the extent to which alternative splicing impacts on behavior-related genes. We show that SRm160 affects gene expression in pacemaker neurons of the Drosophila brain to ensure proper oscillations of the molecular clock. A reduced level of SRm160 in adult pacemaker neurons impairs circadian rhythms in locomotor behavior, and this phenotype is caused, at least in part, by a marked reduction in period (per) levels. Moreover, rhythmic accumulation of the neuropeptide PIGMENT DISPERSING FACTOR in the dorsal projections of these neurons is abolished after SRm160 depletion. The lack of rhythmicity in SRm160-downregulated flies is reversed by a fully spliced per construct, but not by an extra copy of the endogenous locus, showing that SRm160 positively regulates per levels in a splicing-dependent manner. Our findings highlight the significant effect of alternative splicing on the nervous system and particularly on brain function in an in vivo model.


Assuntos
Ritmo Circadiano , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Locomoção , Fatores de Processamento de RNA/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Neurônios/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética
13.
Cell Rep ; 19(1): 72-85, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28380364

RESUMO

The small ventral lateral neurons (sLNvs) constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF), coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure. We identified classical neurotransmitters released by sLNvs through disruption of specific transporters. Adult-specific RNAi-mediated downregulation of the glycine transporter or impairment of glycine synthesis in LNv neurons increased period length by nearly an hour without affecting rhythmicity of locomotor activity. Electrophysiological recordings showed that glycine reduces spiking frequency in circadian neurons. Interestingly, downregulation of glycine receptor subunits in specific sLNv targets impaired rhythmicity, revealing involvement of glycine in information processing within the network. These data identify glycinergic inhibition of specific targets as a cue that contributes to the synchronization of the circadian network.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Glicina/metabolismo , Receptores de Glicina/metabolismo , Transmissão Sináptica , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Humanos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Interferência de RNA , Receptores de Glicina/genética
14.
Front Aging Neurosci ; 9: 61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28352227

RESUMO

The accumulation of amyloid ß peptide (Aß) in the brain of Alzheimer's disease (AD) patients begins many years before clinical onset. Such process has been proposed to be pathogenic through the toxicity of Aß soluble oligomers leading to synaptic dysfunction, phospho-tau aggregation and neuronal loss. Yet, a massive accumulation of Aß can be found in approximately 30% of aged individuals with preserved cognitive function. Therefore, within the frame of the "amyloid hypothesis", compensatory mechanisms and/or additional neurotoxic or protective factors need to be considered and investigated. Here we describe a modifier genetic screen in Drosophila designed to identify genes that modulate toxicity of Aß42 in the CNS. The expression of Aß42 led to its accumulation in the brain and a moderate impairment of negative geotaxis at 18 days post-eclosion (d.p.e) as compared with genetic or parental controls. These flies were mated with a collection of lines carrying chromosomal deletions and negative geotaxis was assessed at 5 and 18 d.p.e. Our screen is the first to take into account all of the following features, relevant to sporadic AD: (1) pan-neuronal expression of wild-type Aß42; (2) a quantifiable complex behavior; (3) Aß neurotoxicity associated with progressive accumulation of the peptide; and (4) improvement or worsening of climbing ability only evident in aged animals. One hundred and ninety-nine deficiency (Df) lines accounting for ~6300 genes were analyzed. Six lines, including the deletion of 52 Drosophila genes with human orthologs, significantly modified Aß42 neurotoxicity in 18-day-old flies. So far, we have validated CG11796 and identified CG17249 as a strong candidate (whose human orthologs are HPD and PRCC, respectively) by using RNAi or mutant hemizygous lines. PRCC encodes proline-rich protein PRCC (ppPRCC) of unknown function associated with papillary renal cell carcinoma. HPD encodes 4-hydroxyphenylpyruvate dioxygenase (HPPD), a key enzyme in tyrosine degradation whose Df causes autosomal recessive Tyrosinemia type 3, characterized by mental retardation. Interestingly, lines with a partial Df of HPD ortholog showed increased intraneuronal accumulation of Aß42 that coincided with geotaxis impairment. These previously undetected modifiers of Aß42 neurotoxicity in Drosophila warrant further study to validate their possible role and significance in the pathogenesis of sporadic AD.

15.
J Dairy Sci ; 99(6): 4586-4589, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27085403

RESUMO

The bovine leukemia virus (BLV) causes leukemia or lymphoma in cattle. Although most BLV-infected animals do not develop the disease, they maintain the transmission chain of BLV at the herd level. As a feasible approach to control the virus, selection of cattle carrying the BoLA-DRB3*0902 allele has been proposed, as this allele is strongly associated with a BLV infection profile or the low proviral load (LPL) phenotype. To test whether these cattle affect the BLV transmission chain under natural conditions, selected BLV-infected LPL-BoLA-DRB3*0902 heterozygous cows were incorporated into a BLV-negative dairy herd. An average ratio of 5.4 (range 4.17-6.37) BLV-negative cows per BLV-infected cow was maintained during the 20mo of the experiment, and no BLV-negative cattle became infected. The BLV incidence rate in this herd was thus zero, whereas BLV incidence rates in different local herds varied from 0.06 to 0.17 cases per 100 cattle-days. This finding strongly suggests that LPL-BoLA-DRB3*0902 cattle disrupted the BLV-transmission chain in the study period.


Assuntos
Leucose Enzoótica Bovina/epidemiologia , Vírus da Leucemia Bovina/fisiologia , Provírus/fisiologia , Carga Viral/fisiologia , Animais , Argentina/epidemiologia , Bovinos , Leucose Enzoótica Bovina/genética , Leucose Enzoótica Bovina/transmissão , Leucose Enzoótica Bovina/virologia , Feminino , Marcadores Genéticos , Antígenos de Histocompatibilidade Classe II/análise , Incidência , Prevalência
16.
J Neurosci ; 35(50): 16315-27, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26674859

RESUMO

Drosophila melanogaster's large lateral ventral neurons (lLNvs) are part of both the circadian and sleep-arousal neuronal circuits. In the past, electrophysiological analysis revealed that lLNvs fire action potentials (APs) in bursting or tonic modes and that the proportion of neurons firing in those specific patterns varies circadianly. Here, we provide evidence that lLNvs fire in bursts both during the day and at night and that the frequency of bursting is what is modulated in a circadian fashion. Moreover, we show that lLNvs AP firing is not only under cell autonomous control, but is also modulated by the network, and in the process we develop a novel preparation to assess this. We demonstrate that lLNv bursting mode relies on a cholinergic input because application of nicotinic acetylcholine receptor antagonists impairs this firing pattern. Finally, we found that bursting of lLNvs depends on an input from visual circuits that includes the cholinergic L2 monopolar neurons from the lamina. Our work sheds light on the physiological properties of lLNvs and on a neuronal circuit that may provide visual information to these important arousal neurons. SIGNIFICANCE STATEMENT: Circadian rhythms are important for organisms to be able to anticipate daily changes in environmental conditions to adjust physiology and behavior accordingly. These rhythms depend on an endogenous mechanism that operates in dedicated neurons. In the fruit fly, the large lateral ventral neurons (lLNvs) are part of both the circadian and sleep-arousal neuronal circuits. Here, we provide new details about the firing properties of these neurons and demonstrate that they depend, not only on cell-autonomous mechanisms, but also on a specific neurotransmitter derived from visual circuits. Our work sheds light on the physiological properties of lLNvs and on a neuronal circuit that may provide visual information to these important arousal neurons.


Assuntos
Acetilcolina/fisiologia , Nível de Alerta/fisiologia , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Vias Visuais/fisiologia , Animais , Ritmo Circadiano/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Olho/inervação , Antagonistas Nicotínicos/farmacologia , Sistema Nervoso Parassimpático , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
17.
FEBS Lett ; 589(22): 3336-42, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26297822

RESUMO

Drosophila melanogaster is a model organism that has been instrumental in understanding the circadian clock at different levels. A range of studies on the anatomical and neurochemical properties of clock neurons in the fly led to a model of interacting neural circuits that control circadian behavior. Here we focus on recent research on the dynamics of the multiple communication pathways between clock neurons, and, particularly, on how the circadian timekeeping system responds to changes in environmental conditions. It is increasingly clear that the fly clock employs multiple signalling cues, such as neuropeptides, fast neurotransmitters, and other signalling molecules, in the dynamic interplay between neuronal clusters. These neuronal groups seem to interact in a plastic fashion, e.g., rearranging their hierarchy in response to changing environmental conditions. A picture is emerging supporting that these dynamic mechanisms are in place to provide an optimal balance between flexibility and an extraordinary accuracy.


Assuntos
Comunicação Celular , Relógios Circadianos/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Meio Ambiente , Neurônios/citologia
18.
J Comp Neurol ; 523(6): 982-96, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25504089

RESUMO

Circadian rhythms are conserved across kingdoms and coordinate physiology and behavior for appropriate time-keeping. The neuronal populations that govern circadian rhythms are described in many animal models, and the current challenge is to understand how they interact to control overt rhythms, remaining plastic enough to respond and adapt to a changing environment. In Drosophila melanogaster, the circadian network comprises about 150 neurons, and the main synchronizer is the neuropeptide pigment-dispersing factor (PDF), released by the well-characterized central pacemaker neurons, the small ventral lateral neurons (sLNvs). However, the rules and properties governing the communication and coupling between this central pacemaker and downstream clusters are not fully elucidated. Here we genetically manipulate the speed of the molecular clock specifically in the central pacemaker neurons of Drosophila and provide experimental evidence of their restricted ability to synchronize downstream clusters. We also demonstrate that the sLNv-controlled clusters have an asymmetric entrainment range and were able to experimentally assess it. Our data imply that different clusters are subjected to different coupling strengths, and display independent endogenous periods. Finally, the manipulation employed here establishes a suitable paradigm to test other network properties as well as the cell-autonomous mechanisms running in different circadian-relevant clusters.


Assuntos
Encéfalo/anatomia & histologia , Relógios Circadianos/fisiologia , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Rede Nervosa/fisiologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Atividade Motora , Rede Nervosa/metabolismo , Neurônios/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
19.
PLoS Genet ; 10(10): e1004700, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25356918

RESUMO

In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Metaloproteinase 1 da Matriz/genética , Plasticidade Neuronal/genética , Neuropeptídeos/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal , Drosophila melanogaster , Atividade Motora/genética , Neurônios/metabolismo , Neurônios/fisiologia
20.
Neuroscience ; 247: 280-93, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23727010

RESUMO

Over the years it has become crystal clear that a variety of processes encode time-of-day information, ranging from gene expression, protein stability, or subcellular localization of key proteins, to the fine tuning of network properties and modulation of input signals, ultimately ensuring that physiology and behavior are properly synchronized to a changing environment. The purpose of this review is to put forward examples (as opposed to generate a comprehensive revision of all the available literature) in which the circadian system displays a remarkable degree of plasticity, from cell autonomous to circuit-based levels. In the literature, the term circadian plasticity has been used to refer to different concepts. The obvious one, more literally, refers to any change that follows a circadian (circa=around, diem=day) pattern, i.e. a daily change of a given parameter. The discovery of daily remodeling of neuronal structures will be referred herein as structural circadian plasticity, and represents an additional and novel phenomenon modified daily. Finally, any plasticity that has to do with a circadian parameter would represent a type of circadian plasticity; as an example, adjustments that allow organisms to adapt their daily behavior to the annual changes in photoperiod is a form of circadian plasticity at a higher organizational level, which is an emergent property of the whole circadian system. Throughout this work we will revisit these types of changes by reviewing recent literature delving around circadian control of clock outputs, from the most immediate ones within pacemaker neurons to the circadian modulation of rest-activity cycles.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Plasticidade Neuronal/fisiologia , Fotoperíodo , Animais , Humanos , Atividade Motora/fisiologia , Rede Nervosa/metabolismo , Proteínas Circadianas Period/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...