Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(12)2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29292719

RESUMO

The Internet of Things (IoT) has promised a future where everything gets connected. Unfortunately, building a single global ecosystem of Things that communicate with each other seamlessly is virtually impossible today. The reason is that the IoT is essentially a collection of isolated "Intranets of Things", also referred to as "vertical silos", which cannot easily and efficiently interact with each other. Smart cities are perhaps the most striking examples of this problem since they comprise a wide range of stakeholders and service providers who must work together, including urban planners, financial organisations, public and private service providers, telecommunication providers, industries, citizens, and so forth. Within this context, the contribution of this paper is threefold: (i) discuss business and technological implications as well as challenges of creating successful open innovation ecosystems, (ii) present the technological building blocks underlying an IoT ecosystem developed in the framework of the EU Horizon 2020 programme, (iii) present a smart city pilot (Heat Wave Mitigation in Métropole de Lyon) for which the proposed ecosystem significantly contributes to improving interoperability between a number of system components, and reducing regulatory barriers for joint service co-creation practices.

2.
J Chem Phys ; 138(20): 204111, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23742458

RESUMO

The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schrödinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scaling of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.

3.
J Chem Phys ; 137(13): 134108, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23039586

RESUMO

We present an explicit solver of the three-dimensional screened and unscreened Poisson's equation, which combines accuracy, computational efficiency, and versatility. The solver, based on a mixed plane-wave/interpolating scaling function representation, can deal with any kind of periodicity (along one, two, or three spatial axes) as well as with fully isolated boundary conditions. It can seamlessly accommodate a finite screening length, non-orthorhombic lattices, and charged systems. This approach is particularly advantageous because convergence is attained by simply refining the real space grid, namely without any adjustable parameter. At the same time, the numerical method features O(NlogN) scaling of the computational cost (N being the number of grid points) very much like plane-wave methods. The methodology, validated on model systems, is tailored for leading-edge computer simulations of materials (including ab initio electronic structure computations), but it might as well be beneficial for other research domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...