Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 121(23): 4443-4451, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36335428

RESUMO

Proteosynthesis on ribosomes is regulated at many levels. Conformational changes of the ribosome, possibly induced by external factors, may transfer over large distances and contribute to the regulation. The molecular principles of this long-distance allostery within the ribosome remain poorly understood. Here, we use structural analysis and atomistic molecular dynamics simulations to investigate peptide deformylase (PDF), an enzyme that binds to the ribosome surface near the ribosomal protein uL22 during translation and chemically modifies the emerging nascent peptide. Our simulations of the entire ribosome-PDF complex reveal that the PDF undergoes a swaying motion on the ribosome surface at the submicrosecond timescale. We show that the PDF affects the conformational dynamics of parts of the ribosome over distances of more than 5 nm. Using a supervised-learning algorithm, we demonstrate that the exit tunnel is influenced by the presence or absence of PDF. Our findings suggest a possible effect of the PDF on the nascent peptide translocation through the ribosome exit tunnel.


Assuntos
Ribossomos
2.
J Biol Chem ; 294(46): 17371-17382, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31558604

RESUMO

Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58-IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.


Assuntos
Fator de Crescimento Insulin-Like I/química , Insulina/química , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Anormalidades Múltiplas/genética , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Transtornos do Crescimento/genética , Humanos , Insulina/análogos & derivados , Insulina/síntese química , Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/genética , Mutação/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/genética , Domínios Proteicos/genética , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...