Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 12(9): 809-17, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22917035

RESUMO

The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N(2)/CH(4)/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C(4)H(5)N(3)O, C(4)H(4)N(2)O(2), C(5)H(6)N(2)O(2), C(5)H(5)N(5), and C(6)H(9)N(3)O(2) are produced by chemistry in the simulation chamber. Gas chromatography-mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C(4)H(5)N(3)O), uracil (C(5)H(4)N(2)O(2)), thymine (C(5)H(6)N(2)O(2)), guanine (C(5)H(5)N(5)O), glycine (C(2)H(5)NO(2)), and alanine (C(3)H(7)NO(2)). Adenine (C(5)H(5)N(5)) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin.


Assuntos
Aminoácidos/química , Nucleotídeos/química , Saturno , Atmosfera/análise , Meio Ambiente Extraterreno , Cromatografia Gasosa-Espectrometria de Massas , Gases/análise
2.
J Phys Chem A ; 113(42): 11195-203, 2009 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-19827851

RESUMO

In this work Titan's atmospheric chemistry is simulated using a capacitively coupled plasma radio frequency discharge in a N(2)-CH(4) stationnary flux. Samples of Titan's tholins are produced in gaseous mixtures containing either 2 or 10% methane before the plasma discharge, covering the methane concentration range measured in Titan's atmosphere. We study their solubility and associated morphology, their infrared spectroscopy signature and the mass distribution of the soluble fraction by mass spectrometry. An important result is to highlight that the previous Titan's tholin solubility studies are inappropriate to fully characterize such a heterogeneous organic matter and we develop a new protocol to evaluate quantitatively tholins solubility. We find that tholins contain up to 35% in mass of molecules soluble in methanol, attached to a hardly insoluble fraction. Methanol is then chosen as a discriminating solvent to characterize the differences between soluble and insoluble species constituting the bulk tholins. No significant morphological change of shape or surface feature is derived from scanning electron microscopy after the extraction of the soluble fraction. This observation suggests a solid structure despite an important porosity of the grains. Infrared spectroscopy is recorded for both fractions. The IR spectra of the bulk, soluble, and insoluble tholins fractions are found to be very similar and reveal identical chemical signatures of nitrogen bearing functions and aliphatic groups. This result confirms that the chemical information collected when analyzing only the soluble fraction provides a valuable insight representative of the bulk material. The soluble fraction is ionized with an atmospheric pressure photoionization source and analyzed by a hybrid mass spectrometer. The congested mass spectra with one peak at every mass unit between 50 and 800 u confirm that the soluble fraction contains a complex mixture of organic molecules. The broad distribution, however, exhibits a regular pattern of mass clusters. Tandem collision induced dissociation analysis is performed in the negative ion mode to retrieve structural information. It reveals that (i) the molecules are ended by methyl, amine and cyanide groups, (ii) a 27 u neutral moiety (most probably HCN) is often released in the fragmentation of tholin anions, and (iii) an ubiquitous ionic fragment at m/z 66 is found in all tandem spectra. A tentative structure is proposed for this negative ion.


Assuntos
Atmosfera/química , Meio Ambiente Extraterreno/química , Saturno , Pressão Atmosférica , Espectrometria de Massas , Metano/química , Metanol/química , Microscopia Eletrônica de Varredura , Estrutura Molecular , Nitrogênio/química , Tamanho da Partícula , Porosidade , Solubilidade , Solventes/química , Espectrofotometria Infravermelho
3.
Planet Space Sci ; 43(1-2): 41-6, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-11538437

RESUMO

The kinetic reactions in N2-xCH4(C2H2) gas discharges with x less than 1% have been studied by emission spectroscopy in the afterglow of D.C. discharges and by mass spectroscopy from radiolysis ionization using alpha particles. The pressure range is from several Torr to 100 Torr. At the end of N2 D.C. discharges at room temperature, for a residence time of about 10(-2) s, the dominant active species are the N atoms with density of 10(14)-10(15) cm-3 for N2 density of about 10(17) cm-3 (3 Torr), the N2(X,V) vibrational molecules with for example [N2(X,V = 10)] approximately 10(14) cm-3 and the electronic metastable molecules N2(A 3 sigma u +) with a density of 10(12) cm-3. In such conditions, the following kinetic reactions have been studied: N2(A) + N2(A) --> N2(C,B,V') + N2(X), N2(A) + N2(X,V>5) --> N2(X) + N2(B,V') in pure N2 post-discharges and N2(A) + CH4 --> products, C + N + M2 --> CN(B,V') + M2, N2(X,V>4) + CN --> N2(X) + CN(B,A,V'), in N2-1% CH4 post-discharges. The clustering reactions of N2-(1-5%)CH4(C2H2) gas mixtures after radiolysis ionization have been studied for the H2CN+ nN2 ions and the equilibrium constants have been determined in the temperature range T = 140-300 K.


Assuntos
Acetileno/química , Atmosfera , Meio Ambiente Extraterreno , Metano/química , Nitrogênio/química , Saturno , Exobiologia , Hidrocarbonetos/química , Cinética , Espectrometria de Massas , Modelos Químicos , Fotoquímica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA