Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931485

RESUMO

After a stroke, antagonist muscle activation during agonist command impedes movement. This study compared measurements of antagonist muscle activation using surface bipolar EMG in the gastrocnemius medialis (GM) and high-density (HD) EMG in the GM and soleus (SO) during isometric submaximal and maximal dorsiflexion efforts, with knee flexed and extended, in 12 subjects with chronic hemiparesis. The coefficients of antagonist activation (CAN) of GM and SO were calculated according to the ratio of the RMS amplitude during dorsiflexion effort to the maximal agonist effort for the same muscle. Bipolar CAN (BipCAN) was compared to CAN from channel-specific (CsCAN) and overall (OvCAN) normalizations of HD-EMG. The location of the CAN centroid was explored in GM, and CAN was compared between the medial and lateral portions of SO. Between-EMG system differences in GM were observed in maximal efforts only, between BipCAN and CsCAN with lower values in BipCAN (p < 0.001), and between BipCAN and OvCAN with lower values in OvCAN (p < 0.05). The CAN centroid is located mid-height and medially in GM, while the CAN was similar in medial and lateral SO. In chronic hemiparesis, the estimates of GM hyperactivity differ between bipolar and HD-EMGs, with channel-specific and overall normalizations yielding, respectively, higher and lower CAN values than bipolar EMG. HD-EMG would be the way to develop personalized rehabilitation programs based on individual antagonist activations.


Assuntos
Eletromiografia , Músculo Esquelético , Paresia , Humanos , Eletromiografia/métodos , Paresia/fisiopatologia , Masculino , Feminino , Músculo Esquelético/fisiopatologia , Pessoa de Meia-Idade , Idoso , Adulto , Doença Crônica , Acidente Vascular Cerebral/fisiopatologia
2.
J Sports Sci ; 42(8): 655-664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38794799

RESUMO

Climbing is a physically demanding discipline, placing significant loads on the finger flexors. Notwithstanding the documented greater endurance capacity of experienced climbers, the mechanisms explaining these training-induced adaptations remain unknown. We therefore investigate whether two non-competing strategies - muscle adaptation and alternate muscle recruitment - may explain the disparity in endurance capacity in participants with different climbing experience. We analysed high-density surface electromyograms (EMGs) from 38 Advanced and Intermediate climbers, during suspension exercises over three different depths (15, 20, 30 mm) using a half-crimp grip position. From the spatial distribution of changes in MeDian Frequency and Root Mean Square values until failure, we assessed how much and how diffusely the myoelectric manifestations of fatigue took place. Advanced climbers exhibited greater endurance, as evidenced by significantly longer failure time (p < 0.009) and lower changes in MDF values (p < 0.013) for the three grip depths. These changes were confined to a small skin region (nearly 25% of the grid size), centred at variable locations across participants. Moreover, lower MDF changes were significantly associated with longer suspension times. Collectively, our results suggest that muscle adaptation rather than load sharing between and within muscles is more likely to explain the improved endurance in experienced climbers.


Assuntos
Adaptação Fisiológica , Eletromiografia , Dedos , Força da Mão , Montanhismo , Fadiga Muscular , Músculo Esquelético , Resistência Física , Humanos , Resistência Física/fisiologia , Fadiga Muscular/fisiologia , Montanhismo/fisiologia , Músculo Esquelético/fisiologia , Masculino , Adulto , Força da Mão/fisiologia , Dedos/fisiologia , Adulto Jovem , Feminino
3.
Endosc Int Open ; 12(3): E419-E427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38504744

RESUMO

Background and study aims Musculoskeletal disorders (MSDs) and injuries (MSIs) are frequent in gastrointestinal endoscopy. The aim of this study was to assess potential ergonomic advantages of a lighter single-use duodenoscope compared with a standard reusable one for endoscopists performing endoscopic retrograde cholangiopancreatography (ERCP). Methods Three experienced endoscopists performed an ergonomic, preclinical, comparative protocol-guided simulation study of a single-use and a standard reusable duodenoscope using an anatomic bench model. Surface EMG signals from left forearm and arm muscles were recorded. A commercial inertial sensor-based motion capture system was applied to record body posture as well. Results A significant lowering of root mean square amplitude and amplitude distribution of biceps brachii signal (ranging from 13% to 42%) was recorded in all the participants when using a single-use duodenoscope compared with a reusable one. An overall reduction of muscle activation amplitude and duration was also associated with the single-use duodenoscope for forearm muscles, with different behaviors among subjects. Participants spent most of the time in wrist extension (> 80%) and ulnar deviation (> 65%). A consistent pattern of functional range of motion employed for completing all procedures was observed. Conclusions Our study showed that a lighter scope has a promising effect in reducing upper arm muscle activity during ERCP with potential benefit on musculoskeletal health in the ERCP setting.

4.
J Neurophysiol ; 131(1): 28-37, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964731

RESUMO

Proprioception refers to the ability to perceive the position and movement of body segments in space. The cortical aspects of the proprioceptive afference from the body can be investigated using corticokinematic coherence (CKC). CKC accurately quantifies the degree of coupling between cortical activity and limb kinematics, especially if precise proprioceptive stimulation of evoked movements is used. However, there is no evidence on how volitional muscle activation during proprioceptive stimulation affects CKC strength. Twenty-five healthy volunteers (28.8 ± 7 yr, 11 females) participated in the experiment, which included electroencephalographic (EEG), electromyographic (EMG), and kinematic recordings. Ankle-joint rotations (2-Hz) were elicited through a movement actuator in two conditions: passive condition with relaxed ankle and active condition with constant 5-Nm plantar flexion exerted during the stimulation. In total, 6 min of data were recorded per condition. CKC strength was defined as the maximum coherence value among all the EEG channels at the 2-Hz movement frequency for each condition separately. Both conditions resulted in significant CKC peaking at the Cz electrode over the foot area of the primary sensorimotor (SM1) cortex. Stronger CKC was found for the active (0.13 ± 0.14) than the passive (0.03 ± 0.04) condition (P < 0.01). The results indicated that volitional activation of the muscles intensifies the neuronal proprioceptive processing in the SM1 cortex. This finding could be explained both by peripheral sensitization of the ankle joint proprioceptors and central modulation of the neuronal proprioceptive processing at the spinal and cortical levels.NEW & NOTEWORTHY The current study is the first to investigate the effect of volitional muscle activation on CKC-based assessment of cortical proprioception of the ankle joint. Results show that the motor efference intensifies the neuronal processing of proprioceptive afference of the ankle joint. This is a significant finding as it may extend the use of CKC method during active tasks to further evaluate the motor efference-proprioceptive afference relationship and the related adaptations to exercise, rehabilitation, and disease.


Assuntos
Magnetoencefalografia , Córtex Sensório-Motor , Feminino , Humanos , Magnetoencefalografia/métodos , Córtex Sensório-Motor/fisiologia , Propriocepção/fisiologia , Movimento/fisiologia , Eletroencefalografia , Músculos
5.
IEEE Trans Biomed Eng ; 71(5): 1617-1627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38133970

RESUMO

OBJECTIVE: The purpose of this study was to develop and evaluate the performance of RPC-Net (Recursive Prosthetic Control Network), a novel method using simple neural network architectures to translate electromyographic activity into hand position with high accuracy and computational efficiency. METHODS: RPC-Net uses a regression-based approach to convert forearm electromyographic signals into hand kinematics. We tested the adaptability of the algorithm to different conditions and compared its performance with that of solutions from the academic literature. RESULTS: RPC-Net demonstrated a high degree of accuracy in predicting hand position from electromyographic activity, outperforming other solutions with the same computational cost. Including previous position data consistently improved results across subjects and conditions. RPC-Net showed robustness against a reduction in the number of electromyography electrodes used and shorter input signals, indicating potential for further reduction in computational cost. CONCLUSION: The results demonstrate that RPC-Net is capable of accurately translating forearm electromyographic activity into hand position, offering a practical and adaptable tool that may be accessible in clinical settings. SIGNIFICANCE: The development of RPC-Net represents a significant advancement. In clinical settings, its application could enable prosthetic devices to be controlled in a way that feels more natural, improving the quality of life for individuals with limb loss.


Assuntos
Algoritmos , Eletromiografia , Mãos , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Humanos , Eletromiografia/métodos , Mãos/fisiologia , Masculino , Adulto , Redes Neurais de Computação , Feminino , Adulto Jovem , Fenômenos Biomecânicos/fisiologia , Membros Artificiais , Antebraço/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-37844006

RESUMO

The value of surface electromyograms (EMGs) lies in their potential to non-invasively probe the neuromuscular system. Whether muscle excitation may be accurately inferred from bipolar EMGs depends on how much the detected signal is both sensitive and specific to the excitation of the target muscle. While both are known to be a function of the inter-electrode distance (IED), specificity has been of long concern in the physiological literature. In contrast, sensitivity, at best, has been implicitly assumed. Here we provide evidence that the IED imposes a biophysical constraint on the sensitivity of surface EMG. From 20 healthy subjects, we tested the hypothesis that excessively reducing the IED limits EMGs' physiological content. We detected bipolar EMGs with IEDs varying from 5 mm to 50 mm from two skeletal muscles with distinct architectures, gastrocnemius and biceps brachii. Non-parametric statistics and Bayesian hierarchical modelling were used to evaluate the dependence of the onset of muscle excitation and signal-to-noise ratio (SNR) on the IED. Experimental results revealed that IED critically affects the sensitivity of bipolar EMGs for both muscles-indeliberately reducing the IED yields EMGs that are not representative of the whole muscle, hampering validity. Simulation results substantiate the generalization of experimental results to small and large electrodes. Based on current and previous findings, we discuss a potentially valid procedure for defining the most appropriate IED for a single bipolar, surface recording-i.e., the distance from the electrode to the target muscle boundary may heuristically serve as a lower bound when choosing an IED.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Eletromiografia/métodos , Teorema de Bayes , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Eletrodos
7.
J Neural Eng ; 20(4)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37437598

RESUMO

Objective.Ultrafast ultrasound (UUS) imaging has been used to detect intramuscular mechanical dynamics associated with single motor units (MUs). Detecting MUs from ultrasound sequences requires decomposing a velocity field into components, each consisting of an image and a signal. These components can be associated with putative MU activity or spurious movements (noise). The differentiation between putative MUs and noise has been accomplished by comparing the signals with MU firings obtained from needle electromyography (EMG). Here, we examined whether the repeatability of the images over brief time intervals can serve as a criterion for distinguishing putative MUs from noise in low-force isometric contractions.Approach.UUS images and high-density surface EMG (HDsEMG) were recorded simultaneously from 99 MUs in the biceps brachii of five healthy subjects. The MUs identified through HDsEMG decomposition were used as a reference to assess the outcomes of the ultrasound-based components. For each contraction, velocity sequences from the same eight-second ultrasound recording were separated into consecutive two-second epochs and decomposed. To evaluate the repeatability of components' images across epochs, we calculated the Jaccard similarity coefficient (JSC). JSC compares the similarity between two images providing values between 0 and 1. Finally, the association between the components and the MUs from HDsEMG was assessed.Main results.All the MU-matched components had JSC > 0.38, indicating they were repeatable and accounted for about one-third of the HDsEMG-detected MUs (1.8 ± 1.6 matches over 4.9 ± 1.8 MUs). The repeatable components (JSC > 0.38) represented 14% of the total components (6.5 ± 3.3 components). These findings align with our hypothesis that intra-sequence repeatability can differentiate putative MUs from noise and can be used for data reduction.Significance.This study provides the foundation for developing stand-alone methods to identify MU in UUS sequences and towards real-time imaging of MUs. These methods are relevant for studying muscle neuromechanics and designing novel neural interfaces.


Assuntos
Contração Isométrica , Músculo Esquelético , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Braço , Voluntários Saudáveis , Contração Muscular/fisiologia
8.
Scand J Med Sci Sports ; 33(7): 1104-1115, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36811255

RESUMO

Predictors and mitigators of strain injuries have been studied in sprint-related sports. While the rate of axial strain, and thus running speed, may determine the site of muscle failure, muscle excitation seemingly offers protection against failure. It seems therefore plausible to ask whether running at different speeds changes the distribution of excitation within muscles. Technical limitations undermine, however, the possibility of addressing this issue in high-speed, ecological conditions. Here, we circumvent these limitations with a miniaturized, wireless, multi-channel amplifier, suited for collecting spatio-temporal data and high-density surface electromyograms (EMGs) during overground running. We segmented running cycles while 8 experienced sprinters ran at speeds close to (70% and 85%) and at (100%) their maximum, over an 80 m running track. Then, we assessed the effect of running speed on the distribution of excitation within biceps femoris (BF) and gastrocnemius medialis (GM). Statistical parametric mapping (SPM) revealed a significant effect of running speed on the amplitude of EMGs for both muscles, during late swing and early stance. Paired SPM revealed greater EMG amplitude when comparing 100% with 70% running speed for BF and GM. Regional differences in excitation were observed only for BF, however. As running speed increased from 70% to 100% of the maximum, a greater degree of excitation was observed at more proximal BF regions (from 2% to 10% of the thigh length) during late swing. We discuss how these results, in the context of the literature, support the protective role of pre-excitation against muscle failure, suggesting the site of BF muscle failure may depend on running speed.


Assuntos
Músculos Isquiossurais , Corrida , Humanos , Músculos Isquiossurais/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Corrida/fisiologia
9.
J Electromyogr Kinesiol ; 67: 102721, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36427373

RESUMO

Biofeedback based on electromyograms (EMGs) has been recently proposed to reduce exaggerated postural activity. Whether the effect of EMG biofeedback on the targeted muscles generalizes to - or is compensated by - other muscles is still an open question we address here. Fourteen young individuals were tested in three 60 s standing trials, without and with EMG-audio feedback: (i) collectively from soleus and medial gastrocnemius and (ii) from medial gastrocnemii. The Root Mean Square (RMS) of bipolar EMGs sampled from postural muscles bilaterally was computed to assess the degree of activity and postural sway was assessed from the center of pressure (CoP). In relation to standing at naturally, EMG-audio feedback from soleus and medial gastrocnemii decreased plantar flexors' activity (∼10 %) but at the cost of increased amplitude of tibialis anterior (∼5%) and vasti muscles (∼20 %) accompanied by a posterior shift of the mean CoP position. However, EMG-audio feedback from medial gastrocnemii reduced only plantar flexors' activity (∼5%) when compared to standing at naturally. Current results suggest the EMG biofeedback has the potential to reduce calf muscles' activity without loading other postural muscles especially when using medial gastrocnemii as feedback source, with implications on postural training aimed at assisting individuals in activating more efficiently postural muscles during standing.


Assuntos
Músculo Esquelético , Postura , Humanos , Músculo Esquelético/fisiologia , Postura/fisiologia , Equilíbrio Postural/fisiologia , Tornozelo/fisiologia , Eletromiografia , Extremidade Inferior/fisiologia
10.
J Appl Physiol (1985) ; 133(5): 1136-1148, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227169

RESUMO

The integration of electromyography (EMG) and ultrasound imaging has provided important information about the mechanisms of muscle activation and contraction. Unfortunately, conventional bipolar EMG does not allow an accurate assessment of the interplay between the neural drive received by muscles, changes in fascicle length and torque. We aimed to assess the relationship between modulations in tibialis anterior muscle (TA) motor unit (MU) discharge, fascicle length, and dorsiflexion torque using ultrasound-transparent high-density EMG electrodes. EMG and ultrasound images were recorded simultaneously from TA using a 32-electrode silicon matrix while performing isometric dorsiflexion contractions at two ankle joint positions (0° or 30° plantar flexion) and torques (20% or 40% of maximum). EMG signals were decomposed into MUs and changes in fascicle length were assessed with a fascicle-tracking algorithm. MU firings were converted into a cumulative spike train (CST) that was cross-correlated with torque (CST-torque) and fascicle length (CST-length). High cross-correlations were found for CST-length (0.60, range: 0.31-0.85) and CST-torque (0.71, range: 0.31-0.88). Cross-correlation delays revealed that the delay between CST-fascicle length (∼75 ms) was smaller than CST-torque (∼150 ms, P < 0.001). These delays affected MU recruitment and de-recruitment thresholds since the fascicle length at which MUs were recruited and de-recruited was similar but MU recruitment-de-recruitment torque varied. This study demonstrates that changes in TA fascicle length are related to modulations in MU firing and dorsiflexion torque. These relationships allow assessment of the interplay between neural drive, muscle contraction and torque, enabling the time required to convert neural activity into movement to be quantified.NEW & NOTEWORTHY By employing ultrasound-transparent high-density EMG electrodes, we show that modulations in tibialis anterior muscle motor unit discharge rate were related to both changes in fascicle length and resultant torque. These relationships permitted the quantification of the relative delays between fluctuations in neural drive, muscle contraction, and transfer of torque via the tendon during sustained isometric dorsiflexion contractions, providing information on the conversion of neural activity into muscle force during a contraction.


Assuntos
Contração Isométrica , Alta do Paciente , Humanos , Contração Isométrica/fisiologia , Recrutamento Neurofisiológico/fisiologia , Contração Muscular/fisiologia , Torque , Eletromiografia , Músculo Esquelético/fisiologia
11.
PLoS One ; 17(3): e0265575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316295

RESUMO

BACKGROUND AND OBJECTIVES: Professional pianists tend to develop playing-related musculoskeletal disorders mostly in the forearm. These injuries are often due to overuse, suggesting the existence of a common forearm region where muscles are often excited during piano playing across subjects. Here we use a grid of electrodes to test this hypothesis, assessing where EMGs with greatest amplitude are more likely to be detected when expert pianists perform different excerpts. METHODS: Tasks were separated into two groups: classical excerpts and octaves, performed by eight, healthy, professional pianists. Monopolar electromyograms (EMGs) were sampled with a grid of 96 electrodes, covering the forearm region where hand and wrist muscles reside. Regions providing consistently high EMG amplitude across subjects were assessed with a non-parametric permutation test, designed for the statistical analysis of neuroimaging experiments. Spatial consistency across trials was assessed with the Binomial test. RESULTS: Spatial consistency of muscle excitation was found across subjects but not across tasks, confining at most 20% of the electrodes in the grid. These local groups of electrodes providing high EMG amplitude were found at the ventral forearm region during classical excerpts and at the dorsal region during octaves, when performed both at preferred and at high, playing speeds. DISCUSSION: Our results revealed that professional pianists consistently load a specific forearm region, depending on whether performing octaves or classical excerpts. This spatial consistency may help furthering our understanding on the incidence of playing-related muscular disorders and provide an anatomical reference for the study of active muscle loading in piano players using surface EMG.


Assuntos
Antebraço , Músculo Esquelético , Eletromiografia/métodos , Antebraço/fisiologia , Mãos , Humanos , Músculo Esquelético/fisiologia , Punho
12.
J Neuroeng Rehabil ; 18(1): 153, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674720

RESUMO

BACKGROUND: The accurate temporal analysis of muscle activation is of great interest in many research areas, spanning from neurorobotic systems to the assessment of altered locomotion patterns in orthopedic and neurological patients and the monitoring of their motor rehabilitation. The performance of the existing muscle activity detectors is strongly affected by both the SNR of the surface electromyography (sEMG) signals and the set of features used to detect the activation intervals. This work aims at introducing and validating a powerful approach to detect muscle activation intervals from sEMG signals, based on long short-term memory (LSTM) recurrent neural networks. METHODS: First, the applicability of the proposed LSTM-based muscle activity detector (LSTM-MAD) is studied through simulated sEMG signals, comparing the LSTM-MAD performance against other two widely used approaches, i.e., the standard approach based on Teager-Kaiser Energy Operator (TKEO) and the traditional approach, used in clinical gait analysis, based on a double-threshold statistical detector (Stat). Second, the effect of the Signal-to-Noise Ratio (SNR) on the performance of the LSTM-MAD is assessed considering simulated signals with nine different SNR values. Finally, the newly introduced approach is validated on real sEMG signals, acquired during both physiological and pathological gait. Electromyography recordings from a total of 20 subjects (8 healthy individuals, 6 orthopedic patients, and 6 neurological patients) were included in the analysis. RESULTS: The proposed algorithm overcomes the main limitations of the other tested approaches and it works directly on sEMG signals, without the need for background-noise and SNR estimation (as in Stat). Results demonstrate that LSTM-MAD outperforms the other approaches, revealing higher values of F1-score (F1-score > 0.91) and Jaccard similarity index (Jaccard > 0.85), and lower values of onset/offset bias (average absolute bias < 6 ms), both on simulated and real sEMG signals. Moreover, the advantages of using the LSTM-MAD algorithm are particularly evident for signals featuring a low to medium SNR. CONCLUSIONS: The presented approach LSTM-MAD revealed excellent performances against TKEO and Stat. The validation carried out both on simulated and real signals, considering normal as well as pathological motor function during locomotion, demonstrated that it can be considered a powerful tool in the accurate and effective recognition/distinction of muscle activity from background noise in sEMG signals.


Assuntos
Memória de Curto Prazo , Músculo Esquelético , Algoritmos , Eletromiografia , Humanos , Redes Neurais de Computação
13.
Artigo em Inglês | MEDLINE | ID: mdl-34398755

RESUMO

OBJECTIVE: Wearable devices have created new opportunities in healthcare and sport sciences by unobtrusively monitoring physiological signals. Textile polymer-based electrodes proved to be effective in detecting electrophysiological potentials but suffer mechanical fragility and low stretch resistance. The goal of this research is to develop and validate in dynamic conditions cost-effective and easily manufacturable electrodes characterized by adequate robustness and signal quality. METHODS: We here propose an optimized screen printing technique for the fabrication of PEDOT:PSS-based textile electrodes directly into finished stretchable garments for surface electromyography (sEMG) applications. A sensorised stretchable leg sleeve was developed, targeting five muscles of interest in rehabilitation and sport science. An experimental validation was performed to assess the accuracy of signal detection during dynamic exercises, including sit-to-stand, leg extension, calf raise, walking, and cycling. RESULTS: The electrodes can resist up to 500 stretch cycles. Tests on five subjects revealed excellent contact impedance, and cross-correlation between sEMG envelopes simultaneously detected from the leg muscles by the textile and Ag/AgCl electrodes was generally greater than 0.9, which proves that it is possible to obtain good quality signals with performance comparable with disposable electrodes. CONCLUSIONS: An effective technique to embed polymer-based electrodes in stretchable smart garments was presented, revealing good performance for dynamic sEMG detections. SIGNIFICANCE: The achieved results pave the way to the integration of unobtrusive electrodes, obtained by screen printing of conductive polymers, into technical fabrics for rehabilitation and sport monitoring, and in general where the detection of sEMG in dynamic conditions is necessary.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Atenção à Saúde , Eletrodos , Eletromiografia , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-34097613

RESUMO

Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows obtaining relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface. While recent advancements have been made on the former issue, detection systems specifically designed for dynamic conditions are at best incipient. The aim of this work is to design, characterize, and test a wearable, HD-sEMG detection system based on textile technology. A 32-electrodes, 15 mm inter-electrode distance textile grid was designed and prototyped. The electrical properties of the material constituting the detection system and of the electrode-skin interface were characterized. The quality of sEMG signals was assessed in both static and dynamic contractions. The performance of the textile detection system was comparable to that of conventional systems in terms of stability of the traces, properties of the electrode-skin interface and quality of the collected sEMG signals during quasi-isometric and highly dynamic tasks.


Assuntos
Músculo Esquelético , Têxteis , Eletrodos , Eletromiografia , Humanos
15.
Exp Brain Res ; 239(8): 2569-2581, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34191118

RESUMO

The purpose of this study is to investigate whether regional modulation of the ankle plantarflexors during standing was related to the recruitment of motor units associated with force direction. Fourteen participants performed a multi-directional leaning task in standing. Participants stood on a force platform and maintained their center of pressure in five different target directions. Motor unit firings were extracted by decomposition of high-density surface electromyograms recorded from the ankle plantarflexor muscles. The motor unit barycentre, defined as the weighted mean of the maximal average rectified values across columns and rows, was used to evaluate the medio-lateral and proximo-distal changes in the surface representation of single motor units across different leaning target directions. Using a motor unit tracking analysis, groups of motor units were identified as being common or unique across the target directions. The leaning directions had an effect on the spatial representations of motor units in the medial gastrocnemius and soleus (p < 0.05), but not in the lateral gastrocnemius (p > 0.05). Motor unit action potentials were represented in the medial and proximal aspects of the muscles during forward vs. lateral leans. Further analysis determined that the common motor units were found in similar spatial locations across the target directions, whereas newly recruited unique motor units were found in different spatial locations according to target direction (p < 0.05). The central nervous system may possess the ability to activate different groups of motor units according to task demands to meet the force-direction requirements of the leaning task.


Assuntos
Tornozelo , Postura , Articulação do Tornozelo , Eletromiografia , Humanos , Músculo Esquelético , Recrutamento Neurofisiológico , Posição Ortostática
16.
Ergonomics ; 64(11): 1379-1392, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33970812

RESUMO

This study aimed at determining the effect of a passive exoskeleton on local perceived discomfort, perceived effort and low back muscles' activity. Thirteen volunteers performed two simulated working tasks with and without the exoskeleton. In the static task, the exoskeleton decreased the lumbar perceived discomfort, the perceived effort and the level of low back muscles' activity (∼10%) while increasing discomfort in the chest and feet. The percent decrease in EMG amplitude was correlated with the percent increase in perceived effort with exoskeleton. For the dynamic task, the exoskeleton increased the discomfort in the chest and decreased the level of back muscle activity (∼5%). Current findings suggest exoskeleton is effective in reducing the back load while increasing the perceived discomfort at non-targeted body regions in both working tasks. The concurrent increase of discomfort in non-targeted areas probably led to a higher perceived effort despite the reduction of low back muscle activity. Practitioner summary: This study provided insights into exoskeleton effects on local discomfort, perceived effort and muscle activity. Overall, the potential benefits of passive exoskeleton should be considered alongside its adverse effects on the non-targeted body regions that can lead to an increase of perceived effort despite the reduction of back muscle activity.


Assuntos
Músculos do Dorso , Exoesqueleto Energizado , Fenômenos Biomecânicos , Eletromiografia , Humanos , Região Lombossacral , Músculo Esquelético , Tronco
17.
BMC Musculoskelet Disord ; 22(1): 432, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975570

RESUMO

BACKGROUND: Altered regional activation of the lumbar extensors has been previously observed in individuals with low back pain (LBP) performing high-effort and fatiguing tasks. It is currently unknown whether similar alterations can be observed during low-effort functional tasks. Similarly, previous studies did not investigate whether side differences in regional activation are present in individuals with LBP. Finally, there is limited evidence of whether the extent of the alteration of regional activation is associated with clinical factors. Therefore, the aim of this study was to investigate whether individuals with LBP exhibit asymmetric regional activation of the thoraco-lumbar extensor muscles during functional tasks, and if the extent of neuromuscular control alteration is associated with clinical and psychosocial outcome domains. METHODS: 21 participants with and 21 without LBP performed five functional tasks (gait, sit-to-stand, forward trunk flexion, shoulder flexion and anterior pelvic tilt). The spatial distribution of activation of the thoraco-lumbar extensor muscles was assessed bilaterally using high-density electromyography. For each side, the distribution of electromyographic (EMG) amplitude was characterized in terms of intensity, location and size. Indices of asymmetry were calculated from these features and comparisons between groups and tasks were performed using ANOVA. The features that significantly differed between groups were correlated with self-reported measures of pain intensity and other outcome domains. RESULTS: Indices of asymmetry did not differ between participants with and without LBP (p > 0.11). The cranio-caudal location of the activation differed between tasks (p < 0.05), but not between groups (p = 0.64). Participants with LBP showed reduced EMG amplitude during anterior pelvic tilt and loading response phase during gait (both p < 0.05). Pearson correlation revealed that greater pain intensity was associated with lower EMG amplitude for both tasks (R<-0.5, p < 0.05). CONCLUSIONS: Despite clear differences between tasks, individuals with and without LBP exhibited similar distributions of EMG amplitude during low-effort functional activities, both within and between sides. However, individuals with LBP demonstrated lower activation of the thoraco-lumbar muscles during gait and anterior pelvic tilt, especially those reporting higher pain intensity. These results have implications in the development or refinement of assessment and intervention strategies focusing on motor control in patients with chronic LBP.


Assuntos
Dor Lombar , Eletromiografia , Humanos , Dor Lombar/diagnóstico , Região Lombossacral , Músculo Esquelético , Postura
18.
Med Eng Phys ; 85: 97-103, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33081969

RESUMO

Different devices for mechano-acoustic muscle vibration became available on the market in the last ten years. Although the use of these vibrators is increasing in research and clinical settings, the features of their stimulation output were never described in literature. In this study we aimed to quantify and compare the stimulation output of the four most widespread pneumatic devices for focal muscle vibration available on the market. A piezoelectric pressure sensor was used to measure the pressure profile generated by the four selected devices in the following experimental conditions: i) measurement of the output changes associated with variations of the stimulation amplitude for three stimulation frequencies (100 Hz, 200 Hz, and 300 Hz); ii) measurement of the output changes during a 20-min long stimulation at constant frequency (300 Hz) and amplitude; iii) measurement of the output changes associated with the progressive activation of all stimulation channels at constant frequency (200 Hz) for different amplitudes. The maximum peak-to-peak amplitudes of the pressure waves were in the range 102 mbar - 369 mbar (below the maximum values declared by the different manufacturers). The shape of the pressure waves generated by the four devices was quasi-sinusoidal and asymmetric with respect to the atmospheric pressure. All output features had a remarkable intra- and inter-device variability. Further studies are required to support the technological improvement of the currently available devices and to focus the issues of vibration effectiveness, limitations, proper protocols, modalities of its application and assessment in neuromuscular training and rehabilitation.


Assuntos
Músculo Esquelético , Vibração , Humanos , Modalidades de Fisioterapia
19.
Sensors (Basel) ; 20(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192073

RESUMO

The transcutaneous stimulation of lower limb muscles during indoor rowing (FES Rowing) has led to a new sport and recreation and significantly increased health benefits in paraplegia. Stimulation is often delivered to quadriceps and hamstrings; this muscle selection seems based on intuition and not biomechanics and is likely suboptimal. Here, we sample surface EMGs from 20 elite rowers to assess which, when, and how muscles are activated during indoor rowing. From EMG amplitude we specifically quantified the onset of activation and silencing, the duration of activity and how similarly soleus, gastrocnemius medialis, tibialis anterior, rectus femoris, vastus lateralis and medialis, semitendinosus, and biceps femoris muscles were activated between limbs. Current results revealed that the eight muscles tested were recruited during rowing, at different instants and for different durations. Rectus and biceps femoris were respectively active for the longest and briefest periods. Tibialis anterior was the only muscle recruited within the recovery phase. No side differences in the timing of muscle activity were observed. Regression analysis further revealed similar, bilateral modulation of activity. The relevance of these results in determining which muscles to target during FES Rowing is discussed. Here, we suggest a new strategy based on the stimulation of vasti and soleus during drive and of tibialis anterior during recovery.


Assuntos
Terapia por Estimulação Elétrica/métodos , Exercício Físico/fisiologia , Extremidade Inferior/fisiologia , Músculo Esquelético/fisiologia , Esportes Aquáticos/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos/fisiologia , Terapia por Estimulação Elétrica/normas , Eletromiografia/métodos , Eletromiografia/normas , Feminino , Humanos , Masculino , Paraplegia/fisiopatologia , Paraplegia/terapia , Fatores de Tempo , Adulto Jovem
20.
IEEE Trans Biomed Eng ; 66(12): 3371-3380, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30869608

RESUMO

OBJECTIVE: The use of linear or bi-dimensional electrode arrays for surface EMG detection (HD-sEMG) is gaining attention as it increases the amount and reliability of information extracted from the surface EMG. However, the complexity of the setup and the encumbrance of HD-sEMG hardware currently limits its use in dynamic conditions. The aim of this paper was to develop a miniaturized, wireless, and modular HD-sEMG acquisition system for applications requiring high portability and robustness to movement artifacts. METHODS: A system with modular architecture was designed. Its core is a miniaturized 32-channel amplifier (Sensor Unit - SU) sampling at 2048 sps/ch with 16 bit resolution and wirelessly transmitting data to a PC or a mobile device. Each SU is a node of a Body Sensor Network for the synchronous signal acquisition from different muscles. RESULTS: A prototype with two SUs was developed and tested. Each SU is small (3.4 cm × 3 cm × 1.5 cm), light (16.7 g), and can be connected directly to the electrodes; thus, avoiding the need for customary, wired setup. It allows to detect HD-sEMG signals with an average noise of 1.8 µVRMS and high performance in terms of rejection of power-line interference and motion artefacts. Tests performed on two SUs showed no data loss in a 22 m range and a ±500 µs maximum synchronization delay. CONCLUSIONS: Data collected in a wide spectrum of experimental conditions confirmed the functionality of the designed architecture and the quality of the acquired signals. SIGNIFICANCE: By simplifying the experimental setup, reducing the hardware encumbrance, and improving signal quality during dynamic contractions, the developed system opens new perspectives in the use of HD-sEMG in applied and clinical settings.


Assuntos
Eletromiografia/instrumentação , Eletromiografia/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Dispositivos Eletrônicos Vestíveis , Artefatos , Desenho de Equipamento , Humanos , Movimento/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...