Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 46(5): 681-692, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36806976

RESUMO

Bioreactors can perform biochemical conversions mediated by biocatalysts, such as enzymes, animal cells, plants, and microorganisms. Among several existing models, airlift bioreactors are devices with the low shear environment and good mass transfer with low energy consumption, employed in several biochemical processes. The fluid flow is enabled through air injection by the sparger located at the bioreactor base. Despite its simple geometry compared with the conventional bioreactors, airlift performance can be optimized via geometrical modifications. Therefore, the objective of this work was to evaluate the effects of the addition of helical flow promoters, positioned in the riser and/or downcomer regions of an airlift of concentric tubes measuring the volumetric oxygen coefficient (kLa) and gas holdup. The results obtained by varying the gas flow rate from 1.0 to 4.0 vvm allowed the system evaluation of oxygen transfer and gas holdup. The inclusion of helical flow promoters increased the kLa, reaching up to 23% in oxygen transfer compared to tests without helicoids and up to 14% increase in the gas holdup. The inclusion of helical flow promotors was beneficial for all gas flow rates. Thus, including these flow promoters is an effective strategy to increase the oxygen transfer rate for bioprocess optimization.


Assuntos
Reatores Biológicos , Oxigênio , Oxigênio/química
2.
Bioprocess Biosyst Eng ; 45(4): 733-740, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35066678

RESUMO

This study involved evaluating the effects of rotational impeller speed agitation (N) and specific air flow rate (Фair) on bikaverin production and on the growth of Fusarium oxysporum employing 11 bench-scale bioreactor assays. The results showed that the maximum bikaverin production (close to 300 mg L-1) was achieved after 48 h of fermentation in rice medium (20 g L-1 milled rice in water) at 28 °C with a volumetric oxygen transfer coefficient (KLa) and shear stress values of approximately 20 h-1 and 17 N m-2, respectively. We reached this combination of parameters using an N of 340 rpm and Фair of 0.935 vvm. These KLa and shear stress values can be used as references when upscaling this process. Thus, this study was important to demonstrate how the main parameters in bioreactors affect bikaverin production and it presented important indications for upscaling this bioprocess.


Assuntos
Reatores Biológicos , Fusarium , Fermentação , Oxigênio , Xantonas
3.
Bioprocess Biosyst Eng ; 44(8): 1721-1732, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33821325

RESUMO

The production of biocompounds through the cultivation of filamentous microorganisms is mainly affected by Oxygen Transfer Rate (OTR) and shear rate ([Formula: see text]) conditions. Despite efforts have been made to evaluate the effect of operating variables (impeller speed, N; and airflow rate, ϕair) on clavulanic acid production, no analysis regarding the effect of OTR and [Formula: see text] was made. Then, the aim of this study was to evaluate the dissociated effect of physical phenomena such as oxygen transfer and shear rate in the production of clavulanic acid from Streptomyces clavuligerus using a stirred tank bioreactor. Streptomyces clavuligerus cultivations were performed at five different OTR and [Formula: see text] conditions by manipulating the operating conditions (N, ϕair, and gas inlet composition). Cultivations performed at equal impeller speed (600 rpm, similar [Formula: see text]) using oxygen enrichment, showed that CA productivity (ProdCA) was positively affected by OTR increase. Subsequently, the different shear conditions (achieved by varying the impeller speed) lead to an increase in CA production levels. Despite both OTR and shear rate positively enhanced CA productivity, [Formula: see text] exhibited the highest impact: an increase of 145% in OTRinitial enhanced the clavulanic acid productivity of about 29%, while an increment in the shear rate of 134% raised the ProdCA in 53%.


Assuntos
Ácido Clavulânico/química , Microbiologia Industrial/métodos , Oxigênio/química , Streptomyces/metabolismo , Reatores Biológicos , Biotecnologia/métodos , Meios de Cultura , Desenho de Equipamento , Resistência ao Cisalhamento , Fatores de Tempo
4.
Bioprocess Biosyst Eng ; 42(6): 995-1008, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30848359

RESUMO

The shear rate is an important bioreactor parameter that needs to be evaluated due to its impact on microorganism morphology and viability, and consequently on bioproduct formation. Airlift bioreactors, classified as low-shear devices, are used as an alternative to conventional stirred-tank reactors. Considerable efforts have been made to characterize the shear environments in airlift bioreactors, using the average shear rate ([Formula: see text]) as a key parameter. However, there is no agreement among the values obtained in different studies, which can differ even in orders of magnitude. The methodologies used to obtain [Formula: see text] in the different studies could be the reason for the lack of agreement among them. In this work, [Formula: see text] in a concentric tube airlift bioreactor was evaluated using computational fluid dynamics (CFD), as well as based on universal velocity profiles for liquid flows in smooth pipes and annuli. Good agreement was obtained between the CFD-based average shear rates and the values obtained from universal velocity profiles, indicating that CFD simulation is a valuable tool for [Formula: see text] prediction.


Assuntos
Reatores Biológicos , Hidrodinâmica , Modelos Químicos , Resistência ao Cisalhamento
5.
Bioprocess Biosyst Eng ; 33(8): 979-88, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20369261

RESUMO

A method proposed in recent literature was applied to evaluate the average shear rate (γav) in three pneumatic bioreactors of 5-dm3 working volume: bubble column, split airlift, and concentric-tube airlift. The volumetric oxygen transfer coefficient (k(L) a) is the appropriate characteristic parameter to assess the average shear rate (γav) in this methodology. Correlations for γav as a function of superficial gas velocity in the riser region (U(GR)) and rheological fluid properties (consistency index, K, and flow index, n) were obtained for each model of pneumatic bioreactor studied. The γav values estimated by the proposed methodology lay within the range of values calculated by classical correlations. The proposed correlations were utilized to predict the γav during the Streptomyces clavuligerus cultivations carried out at the same specific air flow rate (3.5 vvm) in the different types of pneumatic bioreactors. The lowest values of γav related to the highest values of consistency index (K) were found for the bubble column bioreactor, and the highest values of γav related to the lowest values of K were found for the concentric-tube airlift bioreactor. Intermediate values were found for the split airlift bioreactor. The results showed that high γav values affect the structural health of the mycelia by the rupture of the hipha.


Assuntos
Reatores Biológicos , Streptomyces/metabolismo , Estresse Mecânico
6.
Bioprocess Biosyst Eng ; 32(2): 241-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18597122

RESUMO

A method for evaluating the average shear rate ((.)gamma(av)) in a stirred and aerated tank bioreactor has been proposed for non-Newtonian fluids. The volumetric oxygen transfer coefficient (k(L)a) was chosen as the appropriate characteristic parameter to evaluate the average shear rate ((.)gamma(av)). The correlations for the average shear rate as a function of N and rheological properties of the fluid (K and n) were obtained for two airflow rate conditions (phi(air)). The shear rate values estimated by the proposed methodology lay within the range of the values calculated by classical correlations. The proposed correlations were utilized to predict the (.)gamma(av) during the Streptomyces clavuligerus cultivations carried out at 0.5 vvm and four different rotational impeller speeds. The results show that the values of the average shear rate ((.)gamma(av)) varied from 437 to 2,693 s(-1) by increasing with N and flow index (n) and decreasing with the fluid consistency index (K).


Assuntos
Reatores Biológicos , Oxigênio/química , Reologia , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...