Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Oral Biol ; 59(12): 1377-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25201703

RESUMO

OBJECTIVE: Nitric oxide (NO) production and Ca(2+) homeostasis are key determinants for the control of many cell functions. NO is known to be a mediator of Ca(2+) homeostasis in a highly complex and cell-specific manner and although Ca(2+) homeostasis has been explored in human oral cancer cells, the exact mechanisms are not completely understood. In this study we investigated the impact of exogenous NO on [Ca(2+)]c homeostasis in PE/CA-PJ15 cells. DESIGN: Cells were treated with S-nitrosocysteine as NO-donor and the determinations of cytosolic Ca(2+) concentrations were performed using FURA-2 AM. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) and oligomycin were used to challenge mitochondrial functionality, whereas thapsigargin (TG) and La(3+) were employed to perturb intracellular calcium levels. RESULTS: NO derived from S-nitrosocysteine (CySNO) induced a dose-dependent reduction of cytosolic calcium [Ca(2+)]c whereas oxy-haemoglobin (oxyHb) completely counteracted this effect. Subsequently, we assessed possible relationships between NO and cellular structures responsible for Ca(2+) homeostasis. We found that uncoupling of mitochondrial respiration with carbonyl-cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP) and oligomycin strongly reduced the effect of NO on [Ca(2+)]c. Moreover, we found that during this mitochondrial energetic deficit, the effect of NO on [Ca(2+)]c was also reduced in the presence of La(3+) or thapsigargin. CONCLUSIONS: NO induces a concentration-dependent [Ca(2+)]c reduction in PE/CA-PJ15 human oral cancer cells and potentiates mitochondrial Ca(2+) buffering in the presence of TG or La(3+). Further, we show that exogenous NO deregulates Ca(2+) homeostasis in PE/CA-PJ15 cells with fully energized mitochondria.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Óxido Nítrico/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cisteína/análogos & derivados , Cisteína/farmacologia , Citosol/química , Relação Dose-Resposta a Droga , Fura-2/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Mitocôndrias , Oligomicinas/farmacologia , Oxiemoglobinas/farmacologia , S-Nitrosotióis/farmacologia , Tapsigargina/farmacologia , Células Tumorais Cultivadas
2.
Biomacromolecules ; 13(5): 1350-60, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22449037

RESUMO

In this study, we investigated whether multipotent (human-bone-marrow-derived mesenchymal stem cells [hBM-MSCs]) and pluripotent stem cells (murine-induced pluripotent stem cells [iPSCs] and murine embryonic stem cells [ESCs]) respond to nanocomposite fibrous mats of poly(L-lactic acid) (PLLA) loaded with 1 or 8 wt % of calcium-deficient nanohydroxyapatite (d-HAp). Remarkably, the dispersion of different amounts of d-HAp to PLLA produced a set of materials (PLLA/d-HAp) with similar architectures and tunable mechanical properties. After 3 weeks of culture in the absence of soluble osteogenic factors, we observed the expression of osteogenic markers, including the deposition of bone matrix proteins, in multi/pluripotent cells only grown on PLLA/d-HAp nanocomposites, whereas the osteogenic differentiation was absent on stem-cell-neat PLLA cultures. Interestingly, this phenomenon was confined only in hBM-MSCs, murine iPSCs, and ESCs grown on direct contact with the PLLA/d-HAp mats. Altogether, these results indicate that the osteogenic differentiation effect of these electrospun PLLA/d-HAp nanocomposites was independent of the stem cell type and highlight the direct interaction of stem cell-polymeric nanocomposite and the mechanical properties acquired by the PLLA/d-HAp nanocomposites as key steps for the differentiation process.


Assuntos
Cálcio/química , Células-Tronco Embrionárias/química , Ácido Láctico/química , Células-Tronco Mesenquimais/química , Nanocompostos/química , Células-Tronco Pluripotentes/química , Polímeros/química , Animais , Sobrevivência Celular , Durapatita/química , Eletroquímica , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Tamanho da Partícula , Células-Tronco Pluripotentes/citologia , Poliésteres
3.
Tissue Eng Part A ; 15(10): 3139-49, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19344290

RESUMO

The interaction between stem cells and biomaterials with nanoscale topography represents a main route in the roadmap for tissue engineering-based strategies. In this study, we explored the interface between human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and hydrogenated amorphous carbon (a-C:H) film designed with uniform, groove, or grid nanopatterns. In either case, hBM-MSCs preserved growth rate and multi-differentiation properties, suggesting that the films were biocompatible and suitable for stem cell culture. hBM-MSCs responded to different nanopattern designs with specific changes of microtubule organization. In particular, the grid pattern induced a square-localized distribution of alpha-tubulin/actin fibers, whereas the groove pattern exerted a more dynamic effect, associated with microtubule alignment and elongation.


Assuntos
Células da Medula Óssea/citologia , Carbono/química , Citoesqueleto/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanoestruturas/química , Engenharia Tecidual/métodos , Actinas/metabolismo , Materiais Biocompatíveis/química , Humanos , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...