Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 18(1): 882, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29145803

RESUMO

BACKGROUND: Small regulatory RNAs (sRNAs) are widely found in bacteria and play key roles in many important physiological and adaptation processes. Studying their evolution and screening for events of coevolution with other genomic features is a powerful way to better understand their origin and assess a common functional or adaptive relationship between them. However, evolution and coevolution of sRNAs with coding genes have been sparsely investigated in bacterial pathogens. RESULTS: We designed a robust and generic phylogenomics approach that detects correlated evolution between sRNAs and protein-coding genes using their observed and inferred patterns of presence-absence in a set of annotated genomes. We applied this approach on 79 complete genomes of the Listeria genus and identified fifty-two accessory sRNAs, of which most were present in the Listeria common ancestor and lost during Listeria evolution. We detected significant coevolution between 23 sRNA and 52 coding genes and inferred the Listeria sRNA-coding genes coevolution network. We characterized a main hub of 12 sRNAs that coevolved with genes encoding cell wall proteins and virulence factors. Among them, an sRNA specific to L. monocytogenes species, rli133, coevolved with genes involved either in pathogenicity or in interaction with host cells, possibly acting as a direct negative post-transcriptional regulation. CONCLUSIONS: Our approach allowed the identification of candidate sRNAs potentially involved in pathogenicity and host interaction, consistent with recent findings on known pathogenicity actors. We highlight four sRNAs coevolving with seven internalin genes, some of which being important virulence factors in Listeria.


Assuntos
Proteínas de Bactérias/genética , Evolução Molecular , Listeria/genética , Pequeno RNA não Traduzido/genética , Redes Reguladoras de Genes , Genes Bacterianos , Genoma Bacteriano , Listeria/patogenicidade
2.
Bioinformatics ; 33(20): 3283-3285, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28637232

RESUMO

MOTIVATION: Genome sequencing projects sometimes uncover more organisms than expected, especially for complex and/or non-model organisms. It is therefore useful to develop software to identify mix of organisms from genome sequence assemblies. RESULTS: Here we present PhylOligo, a new package including tools to explore, identify and extract organism-specific sequences in a genome assembly using the analysis of their DNA compositional characteristics. AVAILABILITY AND IMPLEMENTATION: The tools are written in Python3 and R under the GPLv3 Licence and can be found at https://github.com/itsmeludo/Phyloligo/. CONTACT: ludovic.mallet@inra.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Bactérias/genética , Eucariotos/genética
3.
mSystems ; 2(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28317029

RESUMO

As for many model organisms, the amount of Listeria omics data produced has recently increased exponentially. There are now >80 published complete Listeria genomes, around 350 different transcriptomic data sets, and 25 proteomic data sets available. The analysis of these data sets through a systems biology approach and the generation of tools for biologists to browse these various data are a challenge for bioinformaticians. We have developed a web-based platform, named Listeriomics, that integrates different tools for omics data analyses, i.e., (i) an interactive genome viewer to display gene expression arrays, tiling arrays, and sequencing data sets along with proteomics and genomics data sets; (ii) an expression and protein atlas that connects every gene, small RNA, antisense RNA, or protein with the most relevant omics data; (iii) a specific tool for exploring protein conservation through the Listeria phylogenomic tree; and (iv) a coexpression network tool for the discovery of potential new regulations. Our platform integrates all the complete Listeria species genomes, transcriptomes, and proteomes published to date. This website allows navigation among all these data sets with enriched metadata in a user-friendly format and can be used as a central database for systems biology analysis. IMPORTANCE In the last decades, Listeria has become a key model organism for the study of host-pathogen interactions, noncoding RNA regulation, and bacterial adaptation to stress. To study these mechanisms, several genomics, transcriptomics, and proteomics data sets have been produced. We have developed Listeriomics, an interactive web platform to browse and correlate these heterogeneous sources of information. Our website will allow listeriologists and microbiologists to decipher key regulation mechanism by using a systems biology approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...