Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114298, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38819991

RESUMO

Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito-borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.

2.
Cell Rep ; 42(9): 113149, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37715951

RESUMO

Tick-borne encephalitis virus (TBEV) is a flavivirus that causes human neuroinfections and represents a growing health problem. The human monoclonal antibody T025 targets envelope protein domain III (EDIII) of TBEV and related tick-borne flaviviruses, potently neutralizing TBEV in vitro and in preclinical models, representing a promising candidate for clinical development. We demonstrate that TBEV escape in the presence of T025 or T028 (another EDIII-targeting human monoclonal antibody) results in virus variants of reduced pathogenicity, characterized by distinct sets of amino acid changes in EDII and EDIII that are jointly needed to confer resistance. EDIII substitution K311N impairs formation of a salt bridge critical for T025-epitope interaction. EDII substitution E230K is not on the T025 epitope but likely induces quaternary rearrangements of the virus surface because of repulsion of positively charged residues on the adjacent EDI. A combination of T025 and T028 prevents virus escape and improves neutralization.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Anticorpos Antivirais , Epitopos , Anticorpos Monoclonais
3.
Sci Immunol ; 8(81): eade0958, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36701425

RESUMO

Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2' site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization, and, similar to fp.006 and hr2.016, protects mice expressing human angiotensin-converting enzyme 2 against infection when present as a bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Animais , Camundongos , SARS-CoV-2 , Epitopos , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Testes de Neutralização
4.
Biotechnol Prog ; 37(3): e3141, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33666366

RESUMO

Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52-90 µg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.


Assuntos
Antígenos de Bactérias , Clostridioides difficile/genética , Plantas Geneticamente Modificadas , Esporos Bacterianos/genética , Vacinas de Plantas Comestíveis , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Agricultura Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Vacinas de Plantas Comestíveis/genética , Vacinas de Plantas Comestíveis/imunologia , Vacinas de Plantas Comestíveis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...