Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Sci Rep ; 14(1): 15334, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961080

RESUMO

Early detection of the adenocarcinoma cancer in colon tissue by means of explainable deep learning, by classifying histological images and providing visual explainability on model prediction. Considering that in recent years, deep learning techniques have emerged as powerful techniques in medical image analysis, offering unprecedented accuracy and efficiency, in this paper we propose a method to automatically detect the presence of cancerous cells in colon tissue images. Various deep learning architectures are considered, with the aim of considering the best one in terms of quantitative and qualitative results. As a matter of fact, we consider qualitative results by taking into account the so-called prediction explainability, by providing a way to highlight on the tissue images the areas that from the model point of view are related to the presence of colon cancer. The experimental analysis, performed on 10,000 colon issue images, showed the effectiveness of the proposed method by obtaining an accuracy equal to 0.99. The experimental analysis shows that the proposed method can be successfully exploited for colon cancer detection and localisation from tissue images.


Assuntos
Neoplasias do Colo , Aprendizado Profundo , Humanos , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/patologia , Processamento de Imagem Assistida por Computador/métodos , Detecção Precoce de Câncer/métodos , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia
2.
Diagnostics (Basel) ; 14(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535000

RESUMO

Occupational ergonomics aims to optimize the work environment and to enhance both productivity and worker well-being. Work-related exposure assessment, such as lifting loads, is a crucial aspect of this discipline, as it involves the evaluation of physical stressors and their impact on workers' health and safety, in order to prevent the development of musculoskeletal pathologies. In this study, we explore the feasibility of machine learning (ML) algorithms, fed with time- and frequency-domain features extracted from inertial signals (linear acceleration and angular velocity), to automatically and accurately discriminate safe and unsafe postures during weight lifting tasks. The signals were acquired by means of one inertial measurement unit (IMU) placed on the sternums of 15 subjects, and subsequently segmented to extract several time- and frequency-domain features. A supervised dataset, including the extracted features, was used to feed several ML models and to assess their prediction power. Interesting results in terms of evaluation metrics for a binary safe/unsafe posture classification were obtained with the logistic regression algorithm, which outperformed the others, with accuracy and area under the receiver operating characteristic curve values of up to 96% and 99%, respectively. This result indicates the feasibility of the proposed methodology-based on a single inertial sensor and artificial intelligence-to discriminate safe/unsafe postures associated with load lifting activities. Future investigation in a wider study population and using additional lifting scenarios could confirm the potentiality of the proposed methodology, supporting its applicability in the occupational ergonomics field.

3.
Int J Neural Syst ; 34(2): 2450007, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38273799

RESUMO

Background and Objective: Alzheimer's disease is nowadays the most common cause of dementia. It is a degenerative neurological pathology affecting the brain, progressively leading the patient to a state of total dependence, thus creating a very complex and difficult situation for the family that has to assist him/her. Early diagnosis is a primary objective and constitutes the hope of being able to intervene in the development phase of the disease. Methods: In this paper, a method to automatically detect the presence of Alzheimer's disease, by exploiting deep learning, is proposed. Five different convolutional neural networks are considered: ALEX_NET, VGG16, FAB_CONVNET, STANDARD_CNN and FCNN. The first two networks are state-of-the-art models, while the last three are designed by authors. We classify brain images into one of the following classes: non-demented, very mild demented and mild demented. Moreover, we highlight on the image the areas symptomatic of Alzheimer presence, thus providing a visual explanation behind the model diagnosis. Results: The experimental analysis, conducted on more than 6000 magnetic resonance images, demonstrated the effectiveness of the proposed neural networks in the comparison with the state-of-the-art models in Alzheimer's disease diagnosis and localization. The best results in terms of metrics are the best with STANDARD_CNN and FCNN with accuracy, precision and recall between 98% and 95%. Excellent results also from a qualitative point of view are obtained with the Grad-CAM for localization and visual explainability. Conclusions: The analysis of the heatmaps produced by the Grad-CAM algorithm shows that in almost all cases the heatmaps highlight regions such as ventricles and cerebral cortex. Future work will focus on the realization of a network capable of analyzing the three anatomical views simultaneously.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Algoritmos , Neuroimagem/métodos
4.
Sensors (Basel) ; 23(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139705

RESUMO

The use of wearable sensors for calculating gait parameters has become increasingly popular as an alternative to optoelectronic systems, currently recognized as the gold standard. The objective of the study was to evaluate the agreement between the wearable Opal system and the optoelectronic BTS SMART DX system for assessing spatiotemporal gait parameters. Fifteen subjects with progressive supranuclear palsy walked at their self-selected speed on a straight path, and six spatiotemporal parameters were compared between the two measurement systems. The agreement was carried out through paired data test, Passing Bablok regression, and Bland-Altman Analysis. The results showed a perfect agreement for speed, a very close agreement for cadence and cycle duration, while, in the other cases, Opal system either under- or over-estimated the measurement of the BTS system. Some suggestions about these misalignments are proposed in the paper, considering that Opal system is widely used in the clinical context.


Assuntos
Paralisia Supranuclear Progressiva , Dispositivos Eletrônicos Vestíveis , Humanos , Paralisia Supranuclear Progressiva/diagnóstico , Marcha , Caminhada
5.
Sensors (Basel) ; 23(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37688069

RESUMO

Brain cancer is widely recognised as one of the most aggressive types of tumors. In fact, approximately 70% of patients diagnosed with this malignant cancer do not survive. In this paper, we propose a method aimed to detect and localise brain cancer, starting from the analysis of magnetic resonance images. The proposed method exploits deep learning, in particular convolutional neural networks and class activation mapping, in order to provide explainability by highlighting the areas of the medical image related to brain cancer (from the model point of view). We evaluate the proposed method with 3000 magnetic resonances using a free available dataset. The results we obtained are encouraging. We reach an accuracy ranging from 97.83% to 99.67% in brain cancer detection by exploiting four different models: VGG16, ResNet50, Alex_Net, and MobileNet, thus showing the effectiveness of the proposed method.


Assuntos
Neoplasias Encefálicas , Encéfalo , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Agressão , Redes Neurais de Computação , Registros
6.
Bioengineering (Basel) ; 10(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37760205

RESUMO

Manual material handling and load lifting are activities that can cause work-related musculoskeletal disorders. For this reason, the National Institute for Occupational Safety and Health proposed an equation depending on the following parameters: intensity, duration, frequency, and geometric characteristics associated with the load lifting. In this paper, we explore the feasibility of several Machine Learning (ML) algorithms, fed with frequency-domain features extracted from electromyographic (EMG) signals of back muscles, to discriminate biomechanical risk classes defined by the Revised NIOSH Lifting Equation. The EMG signals of the multifidus and erector spinae muscles were acquired by means of a wearable device for surface EMG and then segmented to extract several frequency-domain features relating to the Total Power Spectrum of the EMG signal. These features were fed to several ML algorithms to assess their prediction power. The ML algorithms produced interesting results in the classification task, with the Support Vector Machine algorithm outperforming the others with accuracy and Area under the Receiver Operating Characteristic Curve values of up to 0.985. Moreover, a correlation between muscular fatigue and risky lifting activities was found. These results showed the feasibility of the proposed methodology-based on wearable sensors and artificial intelligence-to predict the biomechanical risk associated with load lifting. A future investigation on an enriched study population and additional lifting scenarios could confirm the potential of the proposed methodology and its applicability in the field of occupational ergonomics.

7.
Artigo em Inglês | MEDLINE | ID: mdl-37021918

RESUMO

While in the literature there is much interest in investigating lower limbs gait of patients affected by neurological diseases, such as Parkinson's Disease (PD), fewer publications involving upper limbs movements are available. In previous studies, 24 motion signals (the so-called reaching tasks) of the upper limbs of PD patients and Healthy Controls (HCs) were used to extract several kinematic features through a custom-made software; conversely, the aim of our paper is to investigate the possibility to build models - using these features - for distinguishing PD patients from HCs. First, a binary logistic regression and, then, a Machine Learning (ML) analysis was performed by implementing five algorithms through the Knime Analytics Platform. The ML analysis was performed twice: first, a leave-one out-cross validation was applied; then, a wrapper feature selection method was implemented to identify the best subset of features that could maximize the accuracy. The binary logistic regression achieved an accuracy of 90.5%, demonstrating the importance of the maximum jerk during subjects upper limb motion; the Hosmer-Lemeshow test supported the validity of this model (p-value=0.408). The first ML analysis achieved high evaluation metrics by overcoming 95% of accuracy; the second ML analysis achieved a perfect classification with 100% of both accuracy and area under the curve receiver operating characteristics. The top-five features in terms of importance were the maximum acceleration, smoothness, duration, maximum jerk and kurtosis. The investigation carried out in our work has proved the predictive power of the features, extracted from the reaching tasks involving the upper limbs, to distinguish HCs and PD patients.

8.
Bioengineering (Basel) ; 10(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36978697

RESUMO

Kasai portoenterostomy (KP) plays a crucial role in the treatment of biliary atresia (BA). The aim is to correlate MRI quantitative findings of native liver survivor BA patients after KP with a medical outcome. Thirty patients were classified as having ideal medical outcomes (Group 1; n = 11) if laboratory parameter values were in the normal range and there was no evidence of chronic liver disease complications; otherwise, they were classified as having nonideal medical outcomes (Group 2; n = 19). Liver and spleen volumes, portal vein diameter, liver mean, and maximum and minimum ADC values were measured; similarly, ADC and T2-weighted textural parameters were obtained using ROI analysis. The liver volume was significantly (p = 0.007) lower in Group 2 than in Group 1 (954.88 ± 218.31 cm3 vs. 1140.94 ± 134.62 cm3); conversely, the spleen volume was significantly (p < 0.001) higher (555.49 ± 263.92 cm3 vs. 231.83 ± 70.97 cm3). No differences were found in the portal vein diameter, liver ADC values, or ADC and T2-weighted textural parameters. In conclusion, significant quantitative morpho-volumetric liver and spleen abnormalities occurred in BA patients with nonideal medical outcomes after KP, but no significant microstructural liver abnormalities detectable by ADC values and ADC and T2-weighted textural parameters were found between the groups.

9.
Diagnostics (Basel) ; 12(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36359468

RESUMO

Lifting is one of the most potentially harmful activities for work-related musculoskeletal disorders (WMSDs), due to exposure to biomechanical risk. Risk assessment for work activities that involve lifting loads can be performed through the NIOSH (National Institute of Occupational Safety and Health) method, and specifically the Revised NIOSH Lifting Equation (RNLE). Aim of this work is to explore the feasibility of a logistic regression model fed with time and frequency domains features extracted from signals acquired through one inertial measurement unit (IMU) to classify risk classes associated with lifting activities according to the RNLE. Furthermore, an attempt was made to evaluate which are the most discriminating features relating to the risk classes, and to understand which inertial signals and which axis were the most representative. In a simplified scenario, where only two RNLE variables were altered during lifting tasks performed by 14 healthy adults, inertial signals (linear acceleration and angular velocity) acquired using one IMU placed on the subject's sternum during repeated rhythmic lifting tasks were automatically segmented to extract several features in the time and frequency domains. The logistic regression model fed with significant features showed good results to discriminate "risk" and "no risk" NIOSH classes with an accuracy, sensitivity and specificity equal to 82.8%, 84.8% and 80.9%, respectively. This preliminary work indicated that a logistic regression model-fed with specific inertial features extracted by signals acquired using a single IMU sensor placed on the sternum-is able to discriminate risk classes according to the RNLE in a simplified context, and therefore could be a valid tool to assess the biomechanical risk in an automatic way also in more complex conditions (e.g., real working scenarios).

10.
Sci Rep ; 12(1): 8996, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35637235

RESUMO

Current diagnosis of concussion relies on self-reported symptoms and medical records rather than objective biomarkers. This work uses a novel measurement setup called BioVRSea to quantify concussion status. The paradigm is based on brain and muscle signals (EEG, EMG), heart rate and center of pressure (CoP) measurements during a postural control task triggered by a moving platform and a virtual reality environment. Measurements were performed on 54 professional athletes who self-reported their history of concussion or non-concussion. Both groups completed a concussion symptom scale (SCAT5) before the measurement. We analyzed biosignals and CoP parameters before and after the platform movements, to compare the net response of individual postural control. The results showed that BioVRSea discriminated between the concussion and non-concussion groups. Particularly, EEG power spectral density in delta and theta bands showed significant changes in the concussion group and right soleus median frequency from the EMG signal differentiated concussed individuals with balance problems from the other groups. Anterior-posterior CoP frequency-based parameters discriminated concussed individuals with balance problems. Finally, we used machine learning to classify concussion and non-concussion, demonstrating that combining SCAT5 and BioVRSea parameters gives an accuracy up to 95.5%. This study is a step towards quantitative assessment of concussion.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Realidade Virtual , Atletas , Biomarcadores , Concussão Encefálica/diagnóstico , Humanos
11.
Sensors (Basel) ; 22(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35270853

RESUMO

The impact of neurodegenerative disorders is twofold; they affect both quality of life and healthcare expenditure. In the case of Parkinson's disease, several strategies have been attempted to support the pharmacological treatment with rehabilitation protocols aimed at restoring motor function. In this scenario, the study of upper limb control mechanisms is particularly relevant due to the complexity of the joints involved in the movement of the arm. For these reasons, it is difficult to define proper indicators of the rehabilitation outcome. In this work, we propose a methodology to analyze and extract an ensemble of kinematic parameters from signals acquired during a complex upper limb reaching task. The methodology is tested in both healthy subjects and Parkinson's disease patients (N = 12), and a statistical analysis is carried out to establish the value of the extracted kinematic features in distinguishing between the two groups under study. The parameters with the greatest number of significances across the submovements are duration, mean velocity, maximum velocity, maximum acceleration, and smoothness. Results allowed the identification of a subset of significant kinematic parameters that could serve as a proof-of-concept for a future definition of potential indicators of the rehabilitation outcome in Parkinson's disease.


Assuntos
Doença de Parkinson , Acidente Vascular Cerebral , Fenômenos Biomecânicos , Humanos , Qualidade de Vida , Extremidade Superior
12.
J Pers Med ; 12(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35330328

RESUMO

BACKGROUND: After the acute disease, convalescent coronavirus disease 2019 (COVID-19) patients may experience several persistent manifestations that require multidisciplinary pulmonary rehabilitation (PR). By using a machine learning (ML) approach, we aimed to evaluate the clinical characteristics predicting the effectiveness of PR, expressed by an improved performance at the 6-min walking test (6MWT). METHODS: Convalescent COVID-19 patients referring to a Pulmonary Rehabilitation Unit were consecutively screened. The 6MWT performance was partitioned into three classes, corresponding to different degrees of improvement (low, medium, and high) following PR. A multiclass supervised classification learning was performed with random forest (RF), adaptive boosting (ADA-B), and gradient boosting (GB), as well as tree-based and k-nearest neighbors (KNN) as instance-based algorithms. RESULTS: To train and validate our model, we included 189 convalescent COVID-19 patients (74.1% males, mean age 59.7 years). RF obtained the best results in terms of accuracy (83.7%), sensitivity (84.0%), and area under the ROC curve (94.5%), while ADA-B reached the highest specificity (92.7%). CONCLUSIONS: Our model enables a good performance in predicting the rehabilitation outcome in convalescent COVID-19 patients.

13.
Front Aging Neurosci ; 14: 781480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299943

RESUMO

Background: Mild cognitive impairment (MCI) is frequent in Parkinson's disease (PD) and represents a risk factor for the development of dementia associated with PD (PDD). Since PDD has been associated with disability, caregiver burden, and an increase in health-related costs, early detection of MCI associated with PD (PD-MCI) and its biomarkers is crucial. Objective: Given that gait is considered a surrogate marker for cognitive decline in PD, the aim of this study was to compare gait patterns in PD-MCI subtypes in order to verify the existence of an association between specific gait features and particular MCI subtypes. Methods: A total of 67 patients with PD were consecutively enrolled and assessed by an extensive clinical and cognitive examination. Based on the neuropsychological examination, patients were diagnosed as patients with MCI (PD-MCI) and without MCI (no-PD-MCI) and categorized in MCI subtypes. All patients were evaluated using a motion capture system of a BTS Bioengineering equipped with six IR digital cameras. Gait of the patients was assessed in the ON-state under three different tasks (a single task and two dual tasks). Statistical analysis included the t-test, the Kruskal-Wallis test with post hoc analysis, and the exploratory correlation analysis. Results: Gait pattern was poorer in PD-MCI vs. no-PD-MCI in all tasks. Among PD-MCI subtypes, multiple-domain PD-MCI and amnestic PD-MCI were coupled with worse gait patterns, notably in the dual task. Conclusion: Both the magnitude of cognitive impairment and the presence of memory dysfunction are associated with increased measures of dynamic unbalance, especially in dual-task conditions, likely mirroring the progressive involvement of posterior cortical networks.

14.
Minerva Cardiol Angiol ; 70(1): 67-74, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33944533

RESUMO

Artificial intelligence represents the science which will probably change the future of medicine by solving actually challenging issues. In this special article, the general features of machine learning are discussed. First, a background explanation regarding the division of artificial intelligence, machine learning and deep learning is given and a focus on the structure of machine learning subgroups is shown. The traditional process of a machine learning analysis is described, starting from the collection of data, across features engineering, modelling and till the validation and deployment phase. Due to the several applications of machine learning performed in literature in the last decades and the lack of some guidelines, the need of a standardization for reporting machine learning analysis results emerged. Some possible standards for reporting machine learning results are identified and discussed deeply; these are related to study population (number of subjects), repeatability of the analysis, validation, results, comparison with current practice. The way to the use of machine learning in clinical practice is open and the hope is that, with emerging technology and advanced digital and computational tools, available from hospitalization and subsequently after discharge, it will also be possible, with the help of increasingly powerful hardware, to build assistance strategies useful in clinical practice.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Tecnologia
15.
Healthcare (Basel) ; 9(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34946394

RESUMO

The reduction of healthcare-associated infections (HAIs) is one of the most important issues in the healthcare context for every type of hospital. In three operational units of the Scientific Clinical Institutes Maugeri SpA SB, a rehabilitation hospital in Cassano delle Murge (Italy), some corrective measures were introduced in 2017 to reduce the occurrence of HAIs. Lean Six Sigma was used together with the Define, Measure, Analyze, Improve, Control (DMAIC) roadmap to analyze both the impact of such measures on HAIs and the length of hospital stay (LOS) in the Rehabilitative Cardiology, Rehabilitative Neurology, Functional Recovery and Rehabilitation units in the Medical Center for Intensive Rehabilitation. The data of 2415 patients were analyzed, considering the phases both before and after the introduction of the measures. The hospital experienced a LOS reduction in both patients with and without HAIs; in particular, Cardiology had the greatest reduction for patients with infections (-7 days). The overall decrease in HAIs in the hospital was 3.44%, going from 169 to 121 cases of infections. The noteworthy decrease in LOS implies an increase in admissions and in the turnover indicator of the hospital, which has a positive impact on the hospital management as well as on costs.

16.
Front Neurol ; 12: 674495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177779

RESUMO

The objective of the present study was to describe gait parameters of progressive supranuclear palsy (PSP) phenotypes at early stage verifying the ability of gait analysis in discriminating between disease phenotypes and between the other variant syndromes of PSP (vPSP) and Parkinson's disease (PD). Nineteen PSP (10 PSP-Richardson's syndrome, five PSP-parkinsonism, and four PSP-progressive gait freezing) and nine PD patients performed gait analysis in single and dual tasks. Although phenotypes showed similar demographic and clinical variables, Richardson's syndrome presented worse cognitive functions. Gait analysis demonstrated worse parameters in Richardson's syndrome compared with the vPSP. The overall diagnostic accuracy of the statistical model during dual task was almost 90%. The correlation analysis showed a significant relationship between gait parameters and visuo-spatial, praxic, and attention abilities in PSP-Richardson's syndrome only. vPSP presented worse gait parameters than PD. Richardson's syndrome presents greater gait dynamic instability since the earliest stages than other phenotypes. Computerized gait analysis can differentiate between PSP phenotypes and between vPSP and PD.

17.
Biomed Eng Online ; 20(1): 36, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827586

RESUMO

BACKGROUND: Low-dose X-ray images have become increasingly popular in the last decades, due to the need to guarantee the lowest reasonable patient's exposure. Dose reduction causes a substantial increase of quantum noise, which needs to be suitably suppressed. In particular, real-time denoising is required to support common interventional fluoroscopy procedures. The knowledge of noise statistics provides precious information that helps to improve denoising performances, thus making noise estimation a crucial task for effective denoising strategies. Noise statistics depend on different factors, but are mainly influenced by the X-ray tube settings, which may vary even within the same procedure. This complicates real-time denoising, because noise estimation should be repeated after any changes in tube settings, which would be hardly feasible in practice. This work investigates the feasibility of an a priori characterization of noise for a single fluoroscopic device, which would obviate the need for inferring noise statics prior to each new images acquisition. The noise estimation algorithm used in this study was tested in silico to assess its accuracy and reliability. Then, real sequences were acquired by imaging two different X-ray phantoms via a commercial fluoroscopic device at various X-ray tube settings. Finally, noise estimation was performed to assess the matching of noise statistics inferred from two different sequences, acquired independently in the same operating conditions. RESULTS: The noise estimation algorithm proved capable of retrieving noise statistics, regardless of the particular imaged scene, also achieving good results even by using only 10 frames (mean percentage error lower than 2%). The tests performed on the real fluoroscopic sequences confirmed that the estimated noise statistics are independent of the particular informational content of the scene from which they have been inferred, as they turned out to be consistent in sequences of the two different phantoms acquired independently with the same X-ray tube settings. CONCLUSIONS: The encouraging results suggest that an a priori characterization of noise for a single fluoroscopic device is feasible and could improve the actual implementation of real-time denoising strategies that take advantage of noise statistics to improve the trade-off between noise reduction and details preservation.


Assuntos
Fluoroscopia , Razão Sinal-Ruído , Algoritmos , Imagens de Fantasmas , Reprodutibilidade dos Testes
18.
Sci Rep ; 11(1): 9297, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927317

RESUMO

Progressive supranuclear palsy (PSP) is a rare and rapidly progressing atypical parkinsonism. Albeit existing clinical criteria for PSP have good specificity and sensitivity, there is a need for biomarkers able to capture early objective disease-specific abnormalities. This study aimed to identify gait patterns specifically associated with early PSP. The study population comprised 104 consecutively enrolled participants (83 PD and 21 PSP patients). Gait was investigated using a gait analysis system during normal gait and a cognitive dual task. Univariate statistical analysis and binary logistic regression were used to compare all PD patients and all PSP patients, as well as newly diagnosed PD and early PSP patients. Gait pattern was poorer in PSP patients than in PD patients, even from early stages. PSP patients exhibited reduced velocity and increased measures of dynamic instability when compared to PD patients. Application of predictive models to gait data revealed that PD gait pattern was typified by increased cadence and longer cycle length, whereas a longer stance phase characterized PSP patients in both mid and early disease stages. The present study demonstrates that quantitative gait evaluation clearly distinguishes PSP patients from PD patients since the earliest stages of disease. First, this might candidate gait analysis as a reliable biomarker in both clinical and research setting. Furthermore, our results may offer speculative clues for conceiving early disease-specific rehabilitation strategies.


Assuntos
Análise da Marcha , Doença de Parkinson/diagnóstico , Paralisia Supranuclear Progressiva/diagnóstico , Idoso , Diagnóstico Diferencial , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Paralisia Supranuclear Progressiva/fisiopatologia
19.
J Nucl Cardiol ; 28(3): 888-897, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31222530

RESUMO

BACKGROUND: Breast attenuation may impact the diagnostic accuracy of stress myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT). We compared the performance of conventional (C)-SPECT and cadmium-zinc-telluride (CZT)-SPECT systems in women with low-intermediate likelihood of coronary artery disease (CAD). METHODS AND RESULTS: A total of 109 consecutive women underwent stress-optional rest MPI by both C-SPECT and CZT-SPECT. In the overall study population, a weak albeit significant correlation between total perfusion defect (TPD) measured by C-SPECT and CZT-SPECT was observed (r = 0.38, P < .001) and at Bland-Altman analysis the mean difference in TPD (C-SPECT minus CZT-SPECT) was 2.40% (P < .001). Overall concordance of semi-quantitative diagnostic performance between C-SPECT and CZT-SPECT was observed in 52 (48%) women with a κ value of 0.09. Normalcy rate was significantly higher using CZT-SPECT compared to C-SPECT (P < .001). Machine learning analysis performed through the implementation of J48 algorithm proved that CZT-SPECT has higher sensitivity, specificity, and accuracy than C-SPECT. CONCLUSIONS: In women with low-intermediate likelihood of CAD, there is a poor concordance of diagnostic performance between C-SPECT and CZT-SPECT, and CZT-SPECT allows better normalcy rate detection compared to C-SPECT.


Assuntos
Cádmio , Doença da Artéria Coronariana/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Telúrio , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Zinco , Idoso , Angiografia Coronária/métodos , Eletrocardiografia , Teste de Esforço , Feminino , Câmaras gama , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Pessoa de Meia-Idade , Perfusão , Reprodutibilidade dos Testes , Fatores de Risco , Semicondutores , Software
20.
Parasitology ; 148(4): 427-434, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33213534

RESUMO

The Kubic FLOTAC microscope (KFM) is a compact, low-cost, versatile and portable digital microscope designed to analyse fecal specimens prepared with Mini-FLOTAC or FLOTAC, in both field and laboratory settings. In this paper, we present the characteristics of the KFM along with its first validation for fecal egg count (FEC) of gastrointestinal nematodes (GINs) in cattle. For this latter purpose, a study was performed on 30 fecal samples from cattle experimentally infected by GINs to compare the performance of Mini-FLOTAC either using a traditional optical microscope (OM) or the KFM. The results of the comparison showed a substantial agreement (concordance correlation coefficient = 0.999), with a very low discrepancy (−0.425 ± 7.370) between the two microscopes. Moreover, the KFM captured images comparable with the view provided by the traditional OM. Therefore, the combination of sensitive, accurate, precise and standardized FEC techniques, as the Mini-FLOTAC, with a reliable automated system, will permit the real-time observation and quantification of parasitic structures, thanks also to artificial intelligence software, that is under development. For these reasons, the KFM is a promising tool for an accurate and efficient FEC to improve parasite diagnosis and to assist new generations of operators in veterinary and public health.


Assuntos
Doenças dos Bovinos/diagnóstico , Fezes/parasitologia , Microscopia/instrumentação , Microscopia/métodos , Infecções por Nematoides/veterinária , Contagem de Ovos de Parasitas/instrumentação , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Imageamento Tridimensional/veterinária , Infecções por Nematoides/diagnóstico , Infecções por Nematoides/parasitologia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...