Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 60(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256402

RESUMO

Background and Objectives: Colorectal cancer (CRC) is a major global health challenge. The BRAF V600E mutation, found in 8-12% of CRC patients, exacerbates this by conferring poor prognosis and resistance to therapy. Our study focuses on the efficacy of the HAMLET complex, a molecular substance derived from human breast milk, on CRC cell lines and ex vivo biopsies harboring this mutation, given its previously observed selective toxicity to cancer cells. Materials and Methods: we explored the effects of combining HAMLET with the FOLFOX chemotherapy regimen on CRC cell lines and ex vivo models. Key assessments included cell viability, apoptosis/necrosis induction, and mitochondrial function, aiming to understand the mutation-specific resistance or other cellular response mechanisms. Results: HAMLET and FOLFOX alone decreased viability in CRC explants, irrespective of the BRAF mutation status. Notably, their combination yielded a marked decrease in viability, particularly in the BRAF wild-type samples, suggesting a synergistic effect. While HAMLET showed a modest inhibitory effect on mitochondrial respiration across both mutant and wild-type samples, the response varied depending on the mutation status. Significant differences emerged in the responses of the HT-29 and WiDr cell lines to HAMLET, with WiDr cells showing greater resistance, pointing to factors beyond genetic mutations influencing drug responses. A slight synergy between HAMLET and FOLFOX was observed in WiDr cells, independent of the BRAF mutation. The bioenergetic analysis highlighted differences in mitochondrial respiration between HT-29 and WiDr cells, suggesting that bioenergetic profiles could be key in determining cellular responses to HAMLET. Conclusions: We highlight the potential of HAMLET and FOLFOX as a combined therapeutic approach in BRAF wild-type CRC, significantly reducing cancer cell viability. The varied responses in CRC cell lines, especially regarding bioenergetic and mitochondrial factors, emphasize the need for a comprehensive approach considering both genetic and metabolic aspects in CRC treatment strategies.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Humanos , Sobrevivência Celular , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Células HT29 , Dinâmica Mitocondrial , Proteínas Proto-Oncogênicas B-raf/genética
2.
Oncol Lett ; 18(2): 1961-1968, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31423266

RESUMO

Heme oxygenase (HO)-1 is a heat shock protein induced by hyperthermia, responsible for cellular resistance to temperature. The aim of this in vitro study was to clarify the response of gastric and ovarian cancer cells to hyperthermic intraperitoneal chemotherapy, following the modulation of HO-1 expression. AGS and OVCAR-3 cells were treated with different temperature regimens, either alone or in combination with an IC50 dose of cisplatin for 1 h. Prior to treatment, HO-1 expression was silenced by short interfering RNA transfection. In OVCAR-3 cells, cisplatin increased HO-1 mRNA expression by 3.73-fold under normothermia and 2.4-fold under hyperthermia; furthermore, these factors similarly increased HO-1 protein expression levels. Exposure to cisplatin under hyperthermia reduced the viability of OVCAR-3 cells by 36% and HO-1-silencing enhanced this effect by 20%. HO-1-silencing under normothermia increased apoptotic rates in cisplatin-treated OVCAR-3 cells by 2.07-fold, and hyperthermia enhanced the effect by 3.09-fold. Semi-quantitative polymerase chain reaction (PCR) cell analysis indicated that exposure to cisplatin decreased the cell index under normothermia, and that hyperthermia boosted this effect in OVCAR-3. In AGS cells, only temperature increased cellular HO-1 levels. Silencing HO-1 in AGS cells at 37°C reduced viability by 16% and increased apoptotic rates 2.63-fold. Hyperthermia did not affect AGS viability; however, apoptosis was increased 6.84-fold. PCR analysis indicated no additional effects of hyperthermia on the AGS cell index. HO-1 is induced in cancer cells by different stressors in a variable manner. In tumors with highly inducible HO-1, prior silencing of this gene could improve the cellular response to hyperthermia and cisplatin.

3.
J Bioenerg Biomembr ; 50(5): 329-338, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29943164

RESUMO

Gastrointestinal cancers (gastric, pancreatic and colorectal) are life-threatening diseases, which easily spread to peritoneal cavity (Juhl et al. in Int J Cancer 57:330-335, 1994; Schneider et al. in Gastroenterology 128:1606-1625, 2005; Geer and Brennan in Am J Surg 165:68-72 1993). Application of hyperthermal intraperitoneal chemotherapy (HIPEC) is one of the choices treating these malignancies and prolonging patient survival time. Despite numbers of clinical trials showing positive effects of HIPEC against various types of cancer, the question whether hyperthermia significantly potentiate the cytotoxicity of cisplatin remains unanswered. Little information is available on the HIPEC effect at the level of mitochondria. To define the effect of hyperthermia (40 °C and 43 °C) to cisplatin treated human gastric AGS, pancreatic T3M4 and colorectal Caco-2 cancer cells, we established an in vitro experiment, which mimics clinical HIPEC conditions. Giving the importance of mitochondrial energy metabolism in cancer, we investigated the effect of cisplatin and hyperthermia on mitochondrial Complex-I (glutamate/malate) and complex-II (succinate) dependent respiratory rates, the coupling of oxidative phosphorylation, the proton permeability of mitochondrial inner membrane and on the integrity of mitochondrial outer membrane in Caco-2, AGS and T3M4 cancer cell lines. Our main findings are: 1) treatment of cells with cisplatin causes the impairment of mitochondrial functions - the increase in the proton permeability of mitochondrial inner membrane and decrease in the oxidative phosphorylation efficiency in Caco-2, AGS and T3M4 cancer cells; 2) hyperthermia (40 °C and 43 °C) increased state 2 respiration rate only in AGS cells without any effects on Caco-2 and T3M4 cells; 3) hyperthermia in combination with cisplatin doesn't enhance cisplatin effect neither in Caco-2 and T3M4 nor in AGS cells. Thus, our results show the different mitochondrial response of gastric AGS, pancreatic T3M4 and colorectal Caco-2 cancer cells to cisplatin or/and hyperthermia - treatment. Further studies are needed to find the mechanisms of cell line - specific mitochondrial response to cisplatin and hyperthermia.


Assuntos
Cisplatino/uso terapêutico , Hipertermia Induzida/métodos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos
4.
World J Gastroenterol ; 24(10): 1072-1083, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29563752

RESUMO

AIM: To investigate the response to hyperthermia and chemotherapy, analyzing apoptosis, cytotoxicity, and cisplatin concentration in different digestive system cancer cells. METHODS: AGS (gastric cancer cell line), Caco-2 (colon cancer cell line) and T3M4 (pancreatic cancer cell line) were treated by cisplatin and different temperature setting (37 °C to 45 °C) either in isolation, or in combination. Treatment lasted for one hour. 48 h after the treatment viability was evaluated by MTT, cell apoptosis by Annexin V-PE and 7ADD flow cytometry. Intracellular cisplatin concentration was measured immediately after the treatment, using mass spectrometry. Isobologram analysis was performed to evaluate the mathematical combined effect of temperature and cisplatin. RESULTS: AGS cells were the most sensitive to isolated application of hyperthermia. Hyperthermia, in addition to cisplatin treatment, did not provoke a synergistic effect at intervals from 37 °C to 41 °C in neither cancer cell line. However, a temperature of 43 °C enhanced cisplatin cytotoxicity for Caco-2 cells. Moreover, isobologram analysis revealed mathematical antagonistic effects of cisplatin and temperature combined treatment in AGS cells; variations between synergistic, additive, and antagonistic effects in Caco-2 cells; and additive and antagonistic effects in T3M4 cells. Combined treatment enhanced initiation of cell apoptosis in AGS, Caco-2, and T3M4 cells by 61%, 20%, and 19% respectively. The increase of intracellular cisplatin concentration was observed at 43 °C by 30%, 20%, and 18% in AGS, Caco-2, and T3M4 cells, respectively. CONCLUSION: In addition to cisplatin, hyperthermia up to 43 °C does not affect the viability of cancer cells in a synergistic manner.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Terapia Combinada/efeitos adversos , Hipertermia Induzida/efeitos adversos , Neoplasias/terapia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Terapia Combinada/métodos , Humanos
5.
Anticancer Res ; 37(9): 5011-5018, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28870927

RESUMO

BACKGROUND: Hyperthermic intraperitoneal chemotherapy (HIPEC) is proposed as a promising treatment method, but fundamental information about the contribution of hyperthermia to intraperitoneal chemotherapy is lacking. The purpose of this study was to investigate the cytotoxic effect of hyperthermia and cisplatin on OVCAR-3 cells in vitro. MATERIALS AND METHODS: Imitating the typical clinical conditions of HIPEC, OVCAR-3 cells were exposed to hyperthermia and cisplatin for 1 h. MTT viability test, flow cytometric analysis, and real-time cell and isobologram analysis were performed. RESULTS: Hyperthermia up to 42°C did not significantly increase the effect of cisplatin regarding the viability and apoptosis of OVCAR-3 cells. Moreover, an antagonistic effect of hyperthermia and cisplatin was revealed. CONCLUSION: Our investigation of OVCAR-3 cells critically disputes the benefit of hyperthermia in ovarian cancer treatment. Further in vitro and in vivo research is essential for better understanding of the mechanisms of action of hyperthermia and its role in the treatment of epithelial ovarian cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Cisplatino/farmacologia , Hipertermia Induzida , Neoplasias Ovarianas/patologia , Proliferação de Células , Terapia Combinada , Feminino , Humanos , Neoplasias Ovarianas/terapia , Células Tumorais Cultivadas
6.
Phytother Res ; 29(12): 1894-900, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423207

RESUMO

Activated pancreatic stellate cells (PSC) play a major role in the development of chronic pancreatitis. Flavonoids (C-3-O-G) theoretically may have potential to suppress activated PSC. The aim of our study was to determine the ability of C-3-O-G to invert synthetic and metabolic activity of alcohol stimulated human pancreatic stellate cells (hPSC). In the present study we demonstrate that treatment with C-3-O-G decreased proliferation rate of ethanol activated hPSC by 51%. Synthesis of extracellular matrix proteins in activated hPSC was markedly inhibited, as shown by reduced levels of collagen I and fibronectin expression. The decrease of secretion of fibronectin by 33% and in collagen I-25% in ethanol activated and C-3-O-G treated hPSC was observed. Moreover, treatment of ethanol activated hPSC with C-3-O-G resulted in the decrease of oxygen consumption rate by 44% and reduced levels of ATP synthesis (i.e. energy production) by 41%. Hence, the effects of C-3-O-G on ethanol activated hPSC may provide new insights for the use of anthocyanins as anti-fibrogenic agents in treatment and/or prevention of pancreatic fibrosis.


Assuntos
Antocianinas/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Glucosídeos/farmacologia , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Etanol/farmacologia , Fibronectinas/metabolismo , Fibrose , Humanos , Células Estreladas do Pâncreas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...