Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(11): 6299-6309, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36913359

RESUMO

Nickel (Ni)-catalyzed growth of a single- or rotated-graphene layer is a well-established process above 800 K. In this report, a Au-catalyzed, low-temperature, and facile route at 500 K for graphene formation is described. The substantially lower temperature is enabled by the presence of a surface alloy of Au atoms embedded within Ni(111), which catalyzes the outward segregation of carbon atoms buried in the Ni bulk at temperatures as low as 400-450 K. The resulting surface-bound carbon in turn coalesces into graphene above 450-500 K. Control experiments on a Ni(111) surface show no evidence of carbon segregation or graphene formation at these temperatures. Graphene is identified by its out-of-plane optical phonon mode at 750 cm-1 and its longitudinal/transverse optical phonon modes at 1470 cm-1 while surface carbon is identified by its C-Ni stretch mode at 540 cm-1, as probed by high-resolution electron energy-loss spectroscopy. Dispersion measurements of the phonon modes confirm the presence of graphene. Graphene formation is observed to be maximum at 0.4 ML Au coverage. The results of these systematic molecular-level investigations open the door to graphene synthesis at the low temperatures required for integration with complementary metal-oxide-semiconductor processes.

2.
J Chem Phys ; 130(16): 164714, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19405623

RESUMO

Xenon difluoride is observed to react with Si-Si sigma-dimer and sigma-lattice bonds of Si(100)2 x 1 at 150 K by single and two atom abstraction at F coverages above 1 ML. As in the limit of zero F coverage, a measurable fraction of the scattered, gas phase product of single atom abstraction, XeF, is sufficiently internally excited to dissociate into F and Xe atoms before detection. Using the XeF internal energy and orientation distributions determined in the limit of zero coverage, the laws of conservation of momentum, energy, and mass are applied to the measured F velocity and angular distributions at higher coverage to simulate the Xe atom velocity and angular distributions and their intensities at higher coverage. The simulation predicts the observed Xe atom velocity and angular distributions at high coverage reasonably well, largely because the exothermicity channeled to XeF remains approximately constant as the coverage increases. This constancy is an opportune consequence of the trade-off between the attractiveness of the potential energy surface as the coverage is increased and the dynamics of the XeF product along the potential surface. The energy, momentum, and mass conservation analysis is also used to distinguish between Xe atoms that arise from XeF gas phase dissociation and Xe atoms that are produced by two atom abstraction. This distinction enables the calculation of percentages of the single and two atom abstraction pathways, as well as the percentages of the two pathways available to the Xe atom produced by two atom abstraction, inelastic scattering, and desorption. Finally, the simulation reveals that between 9% and 12% of F atoms produced by gas phase dissociation of XeF are scattered back toward the surface. These F atoms likely react readily with Si to form the higher fluorides that ultimately lead to etching. Gas phase dissociation of the scattered product of a surface reaction is a novel mechanism to explain the unique reactivity of XeF(2) to etch Si in the absence of a plasma.

3.
J Chem Phys ; 129(21): 214701, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19063569

RESUMO

Xenon difluoride reacts with Si(100)2x1 by single atom abstraction whereby a dangling bond abstracts a F atom from XeF(2), scattering the complementary XeF product molecule into the gas phase, as observed in a molecular beam surface scattering experiment. Partitioning of the available reaction energy produces sufficient rovibrational excitation in XeF for dissociation of most of the XeF to occur. The resulting F and Xe atoms are shown to arise from the dissociation of gas phase XeF by demonstrating that the angle-resolved velocity distributions of F, Xe, and XeF conserve momentum, energy, and mass. Dissociation occurs within 2 A of the surface and within a vibrational period of the excited XeF molecule. Approximately an equal amount of the incident XeF(2) is observed to react by two atom abstraction, resulting in adsorption of a second F atom and scattering of a gas phase Xe atom. Two atom abstraction occurs for those XeF product molecules whose bond axes at the transition state are oriented within +/-60 degrees of the normal and with the F end pointed toward the surface.

4.
Phys Rev Lett ; 92(18): 188302, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15169537

RESUMO

Xenon difluoride interacts with Si(100)2 x 1 by atom abstraction, whereby a dangling bond abstracts a F atom from XeF2, scattering the complementary XeF. Partitioning of the reaction exothermicity produces sufficient XeF rovibrational excitation for dissociation to occur. The resulting F and Xe atoms are shown to arise from dissociation of XeF in the gas phase by demonstrating that the angle-resolved velocity distributions of F, Xe, and XeF conserve momentum, energy, and mass. This experiment documents the first observation of dissociation of a surface reaction product in the gas phase.

5.
Acc Chem Res ; 34(9): 737-44, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11560473

RESUMO

Hydrogen atoms emerging from the bulk of Ni metal to the surface are observed to be the reactive species in the hydrogenation of adsorbed methyl radical, ethylene, and acetylene to gas-phase products. Surface-bound H atoms are unreactive. The distinctive chemistry of a bulk H atom arises largely from its significantly higher energy as compared to that of a surface-bound H atom. These results demonstrate that bulk H is not solely a source of surface-bound H in catalytic hydrogenation as proposed 50 years ago, but rather, a reactant with a chemistry of its own.

6.
Science ; 257(5067): 223-5, 1992 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17794753

RESUMO

Studies in heterogeneous catalysis have long speculated on or have provided indirect evidence for the role of hydrogen embedded in the catalyst bulk as a primary reactant. This report describes experiments carried out under single-collision conditions that document the distinctive reactivity of hydrogen embedded in the bulk of the metal catalyst. Specifically, the bulk H atom is shown to be the reactive species in the hydrogenation of CH(3) adsorbed on Ni(111) to form CH(4), while the H atoms bound to the surface were unreactive. These results unambiguously demonstrate the importance of bulk species to heterogeneous catalytic chemistry.

7.
Science ; 249(4965): 133-9, 1990 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17836965

RESUMO

It is becoming increasingly apparent that chemistry at surfaces, whether it be heterogeneous catalysis, semiconductors etching, or chemical vapor deposition, is controlled by much more than the nature and structure of the surface. Recent experiments that principally make use of molecular beam techniques have revealed that the energy at which an incident molecule collides with a surface can be the key factor in determining its reactivity with or on the surface. In addition, the collision energy of an incident particle has proven essential to the finding of new mechanisms for reaction or desorption of molecules at surfaces, collision-induced activation and collision-induced desorption. These phenomena are often responsible for the different surface chemistry observed under conditions of high reactant pressure, such as those present during a heterogeneous catalytic reaction, and of low pressure of reactants (< 10(-4) torr), such as those present in an ultrahigh vacuum surface science experiment. This knowledge of the microscopic origins of the effect of pressure on the chemistry at surfaces has allowed the development of a scheme to bypass the high-pressure requirement. Reactions that are normally observed only at high reactant pressures, and which are the ones most often of practical importance, can now be carried out in low-pressure, ultrahigh vacuum environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...