Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 388: 24-34, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599284

RESUMO

This study marks the exploration into the production of ectoine, a valuable compound with significant potential as an antioxidant, osmoprotectant, anti-inflammatory agent, and stabilizer of cell membranes, proteins, and DNA integrity. Our focus centred on investigating the presence of ectoine and optimizing its production by the novel ectoine producer bacterial strain, Piscibacillus halophilus. For the optimization of ectoine production the effects of carbon and nitrogen sources, salt, pH, agitation and incubation period were optimized by one-factor-at-a-time. We started with an initial ectoine content of 46.92 mg/L, and through a series of optimization processes, we achieved a remarkable increase, resulting in an ectoine content of 1498.2 mg/L. The bacterial species P. halophilus achieved its highest ectoine production after 48 h of incubation, with conditions set at 10 % (w/v) salinity, pH of 7.50, and an agitation speed of 160 rpm. These precise conditions were found to be the most favourable for maximizing ectoine production by this strain. Besides, we have achieved successful purification of ectoine from the crude extract through a streamlined single-step process. This purification method has delivered an exceptional level of purity, surpassing 99.15 %, and an impressive yield of over 99 %. Importantly, we accomplished this using readily available and cost-effective strong acids (HCl) and strong bases (NaOH) to arrange pH gradients. The use of acid and base in the purification process of ectoine reflects an innovative and sustainable methodology.


Assuntos
Diamino Aminoácidos , Diamino Aminoácidos/metabolismo , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Carbono/metabolismo
2.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895164

RESUMO

Sambucus nigra (SN) berry extract is characterized by high antioxidant and anti-inflammatory activity. The current study aimed to investigate the effect of SN berry extract against indomethacin (IND)-induced gastric ulcer in rats and the mechanism involved. SN berry extract alleviated IND-induced gastric ulcers, as shown by assessing pathological manifestations in the gastric mucosa. These protective effects are attributed to attenuated oxidative damage to the gastric mucosa, correlated to increased activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), enhanced glutathione (GSH) levels, total antioxidant capacity (TAC), and upregulation of the Nrf2/HO-1 cascade. Moreover, oxidative stress markers, including malondialdehyde (MDA) and total oxidant status (TOS), were downregulated in SN-extract-treated animals. Furthermore, SN berry extract suppressed gastric mucosal inflammation by downregulating interleukin (IL)-33, IL-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) levels, and attenuating myeloperoxidase (MPO) activity. The protective effects of SN berry extract were similar to those exerted by esomeprazole (ESO), an acid-secretion-suppressive drug. In conclusion, SN berry extract has antiulcerative effects, alleviating oxidative stress and inflammation.


Assuntos
Sambucus nigra , Úlcera Gástrica , Animais , Ratos , Antioxidantes/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Frutas/metabolismo , Glutationa/metabolismo , Indometacina/efeitos adversos , Indometacina/toxicidade , Inflamação , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/patologia , Superóxido Dismutase/metabolismo
3.
Bioresour Technol ; 371: 128646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681344

RESUMO

In the current study, the optimization of ectoine production byNesterenkonia xinjiangensisand purification of ectoine from the bacterial cell extract were performed for the first time. Various carbon sources (glucose, sucrose, maltose, lactose, mannitol, and xylose) and nitrogen sources (ammonium nitrate, ammonium phosphate, ammonium chloride, ammonium oxalate, ammonium sulphate, and ammonium acetate), were used to optimize ectoine production. Subsequently, the effects of salt, pH and, concentrations of carbon and nitrogen source on ectoine production were optimized by response surface methodology (RSM). Ultimately, high pure (over 99%) and yield (98%) of ectoine from bacterial cells extracted was obtained by a single-step process using cation exchange chromatography. This study provides information that higher ectoine production can be achieved from this bacterial isolate by optimizing the factors influencing ectoine production and thus can be used as a new and alternative ectoine producer.


Assuntos
Diamino Aminoácidos , Fermentação , Meios de Cultura , Diamino Aminoácidos/química , Diamino Aminoácidos/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo
4.
Int Microbiol ; 26(2): 219-229, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36342583

RESUMO

Ectoine and hydroxyectoine are compatible solutes with enormous potential for use in the medical and cosmetic industries. Considering the excellent osmoprotective properties of these compatible solutes, we investigate the presence of four compatible solutes (ectoine, hydroxyectoine, proline, and glutamic acid) quantitatively by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in forty-five halophilic/halotolerant bacterial isolates. We determined ectoine production by Marinibacillus sp., Nesterenkonia xinjiangensis, Halobacillus sp., Bacillus patagoniensis, Virgibacillus picturae, Halomonas neptunia, Bacillus patagoniensis, Gracilibacillus sp., Thalassobacillus devorans, Microbacterium sp., Nesterenkonia sp., and Bacillus agaradhaerens, and this production was NaCl dependent. Additionally, the production of hydroxyectoine was observed in six bacterial isolates (Nesterenkonia xinjiangensis, Halobacillus sp., Halomonas neptunia, Thalassobacillus devorans, Nesterenkonia sp., and Bacillus agaradhaerens) which was NaCl and temperature dependent. The study identified new bacterial isolates producing ectoine or hydroxyectoine. While the ectoine production in many different Bacillus members and a few Nesterenkonia have been documented before, ectoine production by Bacillus patagoniensis and Nesterenkonia xinjiangensis has not been shown so far. Further, ectoine production by a member of the genus Thalassobacillus (Thalassobacillus devorans) was demonstrated experimentally for the first time. The findings reported in the study may serve as a basis for the large-scale production of ectoine and hydroxyectoine in the future.


Assuntos
Cloreto de Sódio , Espectrometria de Massas em Tandem , Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...