Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 7(8): e2370, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991231

RESUMO

A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K i) in the low micromolar range (3-60 µM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4-80 µM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol(-1) atom(-1) (compound Nequimed176) is highlighted as a novel non-peptidic, non-covalent cruzain inhibitor as a trypanocidal agent candidate for optimization.


Assuntos
Antiprotozoários/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Protozoários/antagonistas & inibidores , Antiprotozoários/farmacologia , Cristalografia por Raios X , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Concentração Inibidora 50 , Cinética , Testes de Sensibilidade Parasitária/métodos , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/enzimologia
2.
Biol Chem ; 391(12): 1461-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21087086

RESUMO

The 3C-like peptidase of the severe acute respiratory syndrome virus (SARS-CoV) is strictly required for viral replication, thus being a potential target for the development of antiviral agents. In contrast to monomeric picornavirus 3C peptidases, SARS-CoV 3CLpro exists in equilibrium between the monomer and dimer forms in solution, and only the dimer is proteolytically active in dilute buffer solutions. In this study, the increase of SARS-CoV 3CLpro peptidase activity in presence of kosmotropic salts and crowding agents is described. The activation followed the Hofmeister series of anions, with two orders of magnitude enhancement in the presence of Na2SO4, whereas the crowding agents polyethylene glycol and bovine serum albumin increased the hydrolytic rate up to 3 times. Kinetic determinations of the monomer dimer dissociation constant (K(d)) indicated that activation was a result of a more active dimer, without significant changes in K(d) values. The activation was found to be independent of substrate length and was derived from both k(cat) increase and K(m) decrease. The viral peptidase activation described here could be related to the crowded intracellular environment and indicates a further fine-tuning mechanism for biological control, particularly in the microenvironment of the vesicles that are induced in host cells during positive strand RNA virus infection.


Assuntos
Cisteína Endopeptidases/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Proteínas Virais/metabolismo , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Hidrólise , Cinética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Proteínas Virais/química , Replicação Viral
3.
Biochemistry ; 45(39): 12083-9, 2006 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17002308

RESUMO

Picornaviruses produce a large polyprotein, which is cleaved by virally encoded cysteine peptidases, picornain-2A and -3C. Picornain-3C has characteristics of both the serine peptidase chymotrypsin and the cysteine peptidase papain in that the 3D structure resembles chymotrypsin, but its nucleophile is a cysteine SH rather than a serine OH group. We investigated the specificity of poliovirus picornain-3C (PV3C) protease and the influence of kosmotropic salts on catalytic activity, using FRET peptides related to a cleavable segment of the virus polyprotein. The peptidase activity of PV3C was found to be 100-fold higher in the presence of 1.5 M sodium citrate. This activation was anion-dependent, following the Hofmeister series citrate(3-) > SO4(2-) > HPO4(2-) > acetate- > HCO3(-) > Cl-. The activation appeared to be independent of substrate sequence and arose primarily from an increase in kcat. A shift to higher pH was also observed for the pK1 of the enzyme pH-activity profile. Experiments with the fluorescent probe ANS (1-anilino-8-naphthalene sulfonate) showed that the protease bound the dye in the presence of 1 M sodium citrate but not in its absence or in the presence of 1 M NaCl. Structural changes in PV3C protease were detected using circular dichroism and the thermodynamic data indicated a more organized active site in the presence of sodium citrate. PV3C protease was also activated in D2O, which was added to the activation by citrate. These effects seem to be related to nonspecific interactions between the solvent and the protein. Our data show that the catalytic efficiency of PV3C protease is modulated by the composition of the environment and that this modulation may play a role in the optimal processing of polyprotein for the virus assembly that occurs inside specific vesicles formed in poliovirus-infected cells.


Assuntos
Ânions/química , Cisteína Endopeptidases/química , Poliovirus/enzimologia , Proteínas Virais/química , Montagem de Vírus , Proteases Virais 3C , Ânions/metabolismo , Quimotripsina/química , Quimotripsina/metabolismo , Cisteína Endopeptidases/metabolismo , Óxido de Deutério/química , Óxido de Deutério/metabolismo , Ativação Enzimática/fisiologia , Papaína/química , Papaína/metabolismo , Poliovirus/química , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia
4.
Biol Chem ; 386(11): 1191-5, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16307485

RESUMO

The S1 and S2 subsite specificity of recombinant human cathepsins X was studied using fluorescence resonance energy transfer (FRET) peptides with the general sequences Abz-Phe-Xaa-Lys(Dnp)-OH and Abz-Xaa-Arg-Lys(Dnp)-OH, respectively (Abz=ortho-aminobenzoic acid and Dnp=2,4-dinitrophenyl; Xaa=various amino acids). Cathepsin X cleaved all substrates exclusively as a carboxymonopeptidase and exhibited broad specificity. For comparison, these peptides were also assayed with cathepsins B and L. Cathepsin L hydrolyzed the majority of them with similar or higher catalytic efficiency than cathepsin X, acting as an endopeptidase mimicking a carboxymonopeptidase (pseudo-carboxymonopeptidase). In contrast, cathepsin B exhibited poor catalytic efficiency with these substrates, acting as a carboxydipeptidase or an endopeptidase. The S1' subsite of cathepsin X was mapped with the peptide series Abz-Phe-Arg-Xaa-OH and the enzyme preferentially hydrolyzed substrates with hydrophobic residues in the P1' position.


Assuntos
Carboxipeptidases/química , Catepsina B/química , Catepsinas/química , Cisteína Endopeptidases/química , Carboxipeptidases/genética , Catepsina B/genética , Catepsina K , Catepsina L , Catepsinas/genética , Cisteína Endopeptidases/genética , Humanos , Hidrólise , Cinética , Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato/genética , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...