Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786726

RESUMO

The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.

2.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897749

RESUMO

Infectious agents such as viruses, bacteria, and parasites can lead to cancer development. Infection with the helminthic parasite Schistosoma haematobium can cause cancer of the urinary bladder in humans, and infection with the parasites Clonorchis sinensis and Opisthorchis viverrini can promote cholangiocarcinoma. These three pathogens have been categorized as "group 1: carcinogenic to humans" by the International Agency for Research on Cancer (IARC). Additionally, the parasite Schistosoma japonicum has been associated with liver and colorectal cancer and classified as "group 2B: possibly carcinogenic to humans". These parasites express regulatory non-coding RNAs as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), which modulate genic expression in different biological processes. In this review, we discuss the potential roles of miRNAS and lncRNAs encoded by helminthic parasites that are classified by the IARC as carcinogenic and possibly carcinogenic to humans. The miRNAs of these parasites may be involved in carcinogenesis by modulating the biological functions of the pathogen and the host and by altering microenvironments prone to tumor growth. miRNAs were identified in different host fluids. Additionally, some miRNAs showed direct antitumoral effects. Together, these miRNAs show potential for use in future therapeutic and diagnostic applications. LncRNAs have been less studied in these parasites, and their biological effects in the parasite-host interaction are largely unknown.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Helmintos , MicroRNAs , RNA Longo não Codificante , Animais , Ductos Biliares Intra-Hepáticos , Carcinogênese/genética , Helmintos/genética , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Microambiente Tumoral
3.
Pharmaceuticals (Basel) ; 12(3)2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31500285

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Currently, treatment is ineffective and the median overall survival is 20.9 months. The poor prognosis of GBM is a consequence of several altered signaling pathways that favor the proliferation and survival of neoplastic cells. One of these pathways is the deregulation of phosphodiesterases (PDEs). These enzymes participate in the development of GBM and may have value as therapeutic targets to treat GBM. Methylxanthines (MXTs) such as caffeine, theophylline, and theobromine are PDE inhibitors and constitute a promising therapeutic anti-cancer agent against GBM. MTXs also regulate various cell processes such as proliferation, migration, cell death, and differentiation; these processes are related to cancer progression, making MXTs potential therapeutic agents in GBM.

4.
J Oncol ; 2019: 2563092, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275378

RESUMO

BACKGROUND: Glioblastoma is the most common malignant tumor of Central Nervous System. Despite the research in therapeutics, the prognosis is dismal. Malignant glioma stem cells (MGSCs) are a major cause of treatment failure and increasing tumor recurrence. In general, cancer stem cells (CSCs) express prominin-1 (CD133), considered as a potential therapeutic target. In this study, we produced an avian immunotoxin directed against the subpopulation of CD133+ CSCs within a malignant glioma. We used the avian IgY because it has various advantages as increased affinity to mammal antigens and inexpensive obtention of large amounts of specific antibodies (approximately 1 mg/per egg). The design, production, purification and use of IgY anti CD133 immunotoxin constitute an original goal of this research. METHODS: The immunodominant peptide of CD133 was designed to immunize hens; also, the extracellular domain of CD133 was cloned to probe the IgY antibodies. In parallel, a recombinant abrin A chain was produced in E. coli in order to join it to the Fc domain of the anti-CD133 IgY to conform the immunotoxin. This anti-CD133 IgY anti-tumor immunotoxin was tested in vitro and in vivo. Results. The cytotoxicity of the immunotoxin in vitro showed that IgY-abrin immunotoxin reduced 55% cell viability. After subcutaneous MGSCs implantation, the animals treated intraperitoneally or intratumorally with the IgY-abrin immunotoxin showed more than 50% decrease of tumor volume. CONCLUSION: Results showed that the IgY-abrin immunotoxin had cytotoxic activity against CD133+ MGSCs and provides a novel approach for the immunotherapy of glioblastoma.

5.
Biomed Res Int ; 2016: 7487313, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27294132

RESUMO

Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-ß, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma.


Assuntos
Neoplasias Encefálicas/imunologia , Encéfalo/imunologia , Glioblastoma/imunologia , Imunidade Inata/imunologia , Leucócitos Mononucleares/imunologia , Evasão Tumoral/imunologia , Animais , Citocinas/imunologia , Humanos , Modelos Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...