Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Med Res ; 54(3): 197-210, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36990888

RESUMO

BACKGROUND AND AIMS: Mexico is among the countries with the highest estimated excess mortality rates due to the COVID-19 pandemic, with more than half of reported deaths occurring in adults younger than 65 years old. Although this behavior is presumably influenced by the young demographics and the high prevalence of metabolic diseases, the underlying mechanisms have not been determined. METHODS: The age-stratified case fatality rate (CFR) was estimated in a prospective cohort with 245 hospitalized COVID-19 cases, followed through time, for the period October 2020-September 2021. Cellular and inflammatory parameters were exhaustively investigated in blood samples by laboratory test, multiparametric flow cytometry and multiplex immunoassays. RESULTS: The CFR was 35.51%, with 55.2% of deaths recorded in middle-aged adults. On admission, hematological cell differentiation, physiological stress and inflammation parameters, showed distinctive profiles of potential prognostic value in patients under 65 at 7 days follow-up. Pre-existing metabolic conditions were identified as risk factors of poor outcomes. Chronic kidney disease (CKD), as single comorbidity or in combination with diabetes, had the highest risk for COVID-19 fatality. Of note, fatal outcomes in middle-aged patients were marked from admission by an inflammatory landscape and emergency myeloid hematopoiesis at the expense of functional lymphoid innate cells for antiviral immunosurveillance, including NK and dendritic cell subsets. CONCLUSIONS: Comorbidities increased the development of imbalanced myeloid phenotype, rendering middle-aged individuals unable to effectively control SARS-CoV-2. A predictive signature of high-risk outcomes at day 7 of disease evolution as a tool for their early stratification in vulnerable populations is proposed.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Estudos Prospectivos , Comorbidade , Hematopoese
2.
Arch Med Res ; 53(8): 770-784, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462951

RESUMO

It is well recognized that most cancers derive and progress from transformation and clonal expansion of a single cell that possesses stem cell properties, i.e., self-renewal and multilineage differentiation capacities. Such cancer stem cells (CSCs) are usually present at very low frequencies and possess properties that make them key players in tumor development. Indeed, besides having the ability to initiate tumor growth, CSCs drive tumor progression and metastatic dissemination, are resistant to most cancer drugs, and are responsible for cancer relapse. All of these features make CSCs attractive targets for the development of more effective oncologic treatments. In the present review article, we have summarized recent advances in the biology of CSCs, including their identification through their immunophenotype, and their physiology, both in vivo and in vitro. We have also analyzed some molecular markers that might become targets for developing new therapies aiming at hampering CSCs regeneration and cancer relapse.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Células-Tronco Neoplásicas , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Diferenciação Celular
3.
Molecules ; 27(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36080390

RESUMO

Current antineoplastic agents present multiple disadvantages, driving an ongoing search for new and better compounds. Four lupane-type triterpenes, 3α,24-dihydroxylup-20(29)-en-28-oic acid (1), 3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid (2), 3α,23-O-isopropylidenyl-3α,23-dihydroxylup-20(29)-en-28-oic acid (3), and 3α,23-dihydroxylup-20(29)-en-28-oic acid (4), previously isolated from Phoradendron wattii, were evaluated on two cell lines of chronic (K562) and acute (HL60) myeloid leukemia. Compounds 1, 2, and 4 decreased cell viability and inhibit proliferation, mainly in K562, and exhibited an apoptotic effect from 24 h of treatment. Of particular interest is compound 2, which caused arrest in active phases (G2/M) of the cell cycle, as shown by in silico study of the CDK1/Cyclin B/Csk2 complex by molecular docking. This compound [3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid] s a promising candidate for incorporation into cancer treatments and deserves further study.


Assuntos
Leucemia , Phoradendron , Triterpenos , Ciclo Celular , Linhagem Celular , Humanos , Leucemia/tratamento farmacológico , Simulação de Acoplamento Molecular , Estrutura Molecular , Phoradendron/metabolismo , Folhas de Planta/metabolismo
4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142235

RESUMO

Chronic Myeloid Leukemia (CML) originates in a leukemic stem cell that resides in the bone marrow microenvironment, where they coexist with cellular and non-cellular elements. The vascular microenvironment has been identified as an important element in CML development since an increase in the vascularization has been suggested to be related with poor prognosis; also, using murine models, it has been reported that bone marrow endothelium can regulate the quiescence and proliferation of leukemic stem and progenitor cells. This observation, however, has not been evaluated in primary human cells. In this report, we used a co-culture of primitive (progenitor and stem) CML cells with endothelial colony forming cells (ECFC) as an in vitro model to evaluate the effects of the vascular microenvironment in the leukemic hematopoiesis. Our results show that this interaction allows the in vitro maintenance of primitive CML cells through an inflammatory microenvironment able to regulate the proliferation of progenitor cells and the permanence in a quiescent state of leukemic stem cells.


Assuntos
Células Endoteliais , Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Medula Óssea , Doença Crônica , Hematopoese , Humanos , Camundongos , Células-Tronco Neoplásicas , Microambiente Tumoral
5.
Iran J Parasitol ; 17(2): 259-267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032741

RESUMO

Background: The gastrointestinal parasite Giardia lamblia causes giardiasis. Its treatment with standard drugs produces side effects and improper treatment can generate resistant strains. New antigiardial compounds are needed. An analysis was done to identify the antigiardial activity of Morinda royoc, a plant used in traditional Mayan medicine to treat stomach and bowel pain. We aimed to assess the efficacy of M. royoc roots against G. lamblia and their effect on cells viability. Methods: A methanol extract was done of the root and then fractionated. The extract and fractions were tested in vitro on G. lamblia trophozoites and their effect on cell viability was quantified by flow cytometry. The active extract and fractions were analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography. Results: The hexane fraction exhibited potent activity against G. lamblia (IC50 = 0.08 µg/mL). Its principal component was an anthraquinone-type compound. None of the fractions were toxic to human promyelocytic leukemia, chronic myelogenous leukemia and human mononuclear cells. Conclusion: The medicinal plant M. royoc contains promising bioactive agents with antigiardial activity and deserves further research.

6.
Cancer Control ; 28: 10732748211038735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34565215

RESUMO

Since the second half of the 20th century, our knowledge about the biology of cancer has made extraordinary progress. Today, we understand cancer at the genomic and epigenomic levels, and we have identified the cell that starts neoplastic transformation and characterized the mechanisms for the invasion of other tissues. This knowledge has allowed novel drugs to be designed that act on specific molecular targets, the immune system to be trained and manipulated to increase its efficiency, and ever more effective therapeutic strategies to be developed. Nevertheless, we are still far from winning the war against cancer, and thus biomedical research in oncology must continue to be a global priority. Likewise, there is a need to reduce unequal access to medical services and improve prevention programs, especially in countries with a low human development index.


Assuntos
Pesquisa Biomédica/organização & administração , Oncologia/organização & administração , Neoplasias/fisiopatologia , Neoplasias/terapia , Antineoplásicos Imunológicos/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos/métodos , Epigênese Genética , Genômica , Acessibilidade aos Serviços de Saúde , Humanos , Invasividade Neoplásica/fisiopatologia , Neoplasias/epidemiologia , Neoplasias/genética , Células-Tronco Neoplásicas/fisiologia
8.
Ann Med ; 53(1): 197-207, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33345622

RESUMO

BACKGROUND: COVID-19 counts 46 million people infected and killed more than 1.2 million. Hypoxaemia is one of the main clinical manifestations, especially in severe cases. HIF1α is a master transcription factor involved in the cellular response to oxygen levels. The immunopathogenesis of this severe form of COVID-19 is poorly understood. METHODS: We performed scRNAseq from leukocytes from five critically ill COVID-19 patients and characterized the expression of hypoxia-inducible factor1α and its transcriptionally regulated genes. Also performed metanalysis from the publicly available RNAseq data from COVID-19 bronchoalveolar cells. RESULTS: Critically-ill COVID-19 patients show a shift towards an immature myeloid profile in peripheral blood cells, including band neutrophils, immature monocytes, metamyelocytes, monocyte-macrophages, monocytoid precursors, and promyelocytes-myelocytes, together with mature monocytes and segmented neutrophils. May be the result of a physiological response known as emergency myelopoiesis. These cellular subsets and bronchoalveolar cells express HIF1α and their transcriptional targets related to inflammation (CXCL8, CXCR1, CXCR2, and CXCR4); virus sensing, (TLR2 and TLR4); and metabolism (SLC2A3, PFKFB3, PGK1, GAPDH and SOD2). CONCLUSIONS: The up-regulation and participation of HIF1α in events such as inflammation, immunometabolism, and TLR make it a potential molecular marker for COVID-19 severity and, interestingly, could represent a potential target for molecular therapy. Key messages Critically ill COVID-19 patients show emergency myelopoiesis. HIF1α and its transcriptionally regulated genes are expressed in immature myeloid cells which could serve as molecular targets. HIF1α and its transcriptionally regulated genes is also expressed in lung cells from critically ill COVID-19 patients which may partially explain the hypoxia related events.


Assuntos
COVID-19/genética , Estado Terminal , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Mieloides/metabolismo , Análise de Sequência de RNA/métodos , Feminino , Humanos , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
9.
Methods Mol Biol ; 2174: 207-216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32813252

RESUMO

From the knowledge that hematopoiesis does not occur randomly in the bone marrow but is regulated by the different components of the microenvironment, the use of in vitro coculture systems has been used as a powerful tool in the analysis of different processes that are involved in the maintenance of blood cells. In this chapter, we describe a methodological strategy to perform a coculture between primitive hematopoietic cells and endothelial cells to evaluate cell cycle, an aspect of relevant importance in the permanence of primitive leukemic cells.


Assuntos
Ciclo Celular , Técnicas de Cocultura/métodos , Células Endoteliais/citologia , Citometria de Fluxo/métodos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Antígenos CD34 , Células da Medula Óssea/patologia , Separação Celular/métodos , Centrifugação com Gradiente de Concentração/métodos , Humanos
10.
J Cell Mol Med ; 22(10): 4899-4912, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30079458

RESUMO

Tyrosine kinase inhibitors (TKI) have become a first-line treatment for chronic myeloid leuakemia (CML). TKIs efficiently target bulk CML cells; however, they are unable to eliminate the leukaemic stem cell (LSC) population that causes resistance and relapse in CML patients. In this study, we assessed the effects of parthenolide (PTL) and dimethyl amino parthenolide (DMAPT), two potent inhibitors of LSCs in acute myeloid leukaemia (AML), on CML bulk and CML primitive (CD34+ lin- ) cells. We found that both agents induced cell death in CML, while having little effect on the equivalent normal hematopoietic cells. PTL and DMAPT caused an increase in reactive oxygen species (ROS) levels and inhibited NF-κB activation. PTL and DMAPT inhibited cell proliferation and induced cell cycle arrest in G0 and G2 phases. Furthermore, we found cell cycle inhibition to correlate with down-regulation of cyclin D1 and cyclin A. In summary, our study shows that PTL and DMAPT have a strong inhibitory effect on CML cells. Given that cell cycle arrest was not dependent on ROS induction, we speculate that this effect could be a direct consequence of NF-κB inhibition and if this mechanism was to be evaded, PTL and DMAPT induced cell death would be potentiated.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Sesquiterpenos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina A/genética , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , NF-kappa B/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Cancer Med ; 6(12): 2942-2956, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29030909

RESUMO

In this study, we determined the gene expression profiles of bone marrow-derived cell fractions, obtained from normal subjects and Chronic Myeloid Leukemia (CML) patients, that were highly enriched for hematopoietic stem (HSCs) and progenitor (HPCs) cells. Our results indicate that the profiles of CML HSCs and HPCs were closer to that of normal progenitors, whereas normal HSCs showed the most different expression profile of all. We found that the expression profiles of HSCs and HPCs from CML marrow were closer to each other than those of HSCs and HPCs from normal marrow. The major biologic processes dysregulated in CML cells included DNA repair, cell cycle, chromosome condensation, cell adhesion, and the immune response. We also determined the genomic changes in both normal and CML progenitor cells under culture conditions, and found that several genes involved in cell cycle, steroid biosynthesis, and chromosome segregation were upregulated, whereas genes involved in transcription regulation and apoptosis were downregulated. Interestingly, these changes were the same, regardless of the addition of Imatinib (IM) to the culture. Finally, we identified three genes-PIEZO2, RXFP1, and MAMDC2- that are preferentially expressed by CML primitive cells and that encode for cell membrane proteins; thus, they could be used as biomarkers for CML stem cells.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Biologia Computacional , Bases de Dados Genéticas , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Transcriptoma , Células Tumorais Cultivadas
12.
PLoS One ; 12(9): e0183827, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28910333

RESUMO

BACKGROUND: Venous thromboembolic disease (VTD) is a public health problem. We recently reported that endothelial colony-forming cells (ECFCs) derived from endothelial cells (EC) (ECFC-ECs) from patients with VTD have a dysfunctional state. For this study, we proposed that a dysfunctional status of these cells generates a reduction of its proliferative ability, which is also associated with senescence and reactive oxygen species (ROS). METHODS AND RESULTS: Human mononuclear cells (MNCs) were obtained from peripheral blood from 40 healthy human volunteers (controls) and 50 patients with VTD matched by age (20-50 years) and sex to obtain ECFCs. We assayed their proliferative ability with plasma of patients and controls and supernatants of cultures from ECFC-ECs, senescence-associated ß-galactosidase (SA-ß-gal), ROS, and expression of ephrin-B2/Eph-B4 receptor. Compared with cells from controls, cells from VTD patients showed an 8-fold increase of ECFCs that emerged 1 week earlier, reduced proliferation at long term (39%) and, in passages 4 and 10, a highly senescent rate (30±1.05% vs. 91.3±15.07%, respectively) with an increase of ROS and impaired expression of ephrin-B2/Eph-4 genes. Proliferation potential of cells from VTD patients was reduced in endothelial medium [1.4±0.22 doubling population (DP)], control plasma (1.18±0.31 DP), or plasma from VTD patients (1.65±0.27 DP). CONCLUSIONS: As compared with controls, ECFC-ECs from individuals with VTD have higher oxidative stress, proliferation stress, cellular senescence, and low proliferative potential. These findings suggest that patients with a history of VTD are ECFC-ECs dysfunctional that could be associated to permanent risk for new thrombotic events.


Assuntos
Células Endoteliais/citologia , Efrina-B2/genética , Receptor EphA4/genética , Células-Tronco/patologia , Trombose Venosa/patologia , Adulto , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Efrina-B2/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Receptor EphA4/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Trombose Venosa/genética , Trombose Venosa/metabolismo , Adulto Jovem
13.
Leuk Res ; 52: 8-19, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27855286

RESUMO

Several novel compounds have been developed for the treatment of different types of leukemia. In the present study, we have assessed the in vitro effects of Casiopeina III-Ea, a copper-containing small molecule, on cells from patients with Chronic Myeloid Leukemia (CML). We included primary CD34+ Lineage-negative (Lin-) cells selected from CML bone marrow, as well as the K562 and MEG01 cell lines. Bone marrow cells obtained from normal individuals - both total mononuclear cells as well as CD34+ Lin- cells- were used as controls. IC50 corresponded to 0.5µM for K562 cells, 0.63µM for MEG01 cells, 0.38µM for CML CD34+ lin- cells, and 1.0µM for normal CD34+ lin- cells. Proliferation and expansion were also inhibited to significantly higher extents in cultures of CML cells as compared to their normal counterparts. All these effects seemed to occur via a bcr-abl transcription-independent mechanism that involved a delay in cell division, an increase in cell death, generation of Reactive Oxygen Species and changes in cell cycle. Our results demonstrate that Casiopeina III-Ea possesses strong antileukemic activity in vitro, and warrant further preclinical (animal) studies to assess such effects in vivo.


Assuntos
Complexos de Coordenação/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Fenantrolinas/farmacologia , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cobre , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Espécies Reativas de Oxigênio , Células Tumorais Cultivadas
14.
Cell Oncol (Dordr) ; 40(1): 1-20, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27678246

RESUMO

BACKGROUND: Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. CONCLUSIONS: A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.


Assuntos
Leucemia/patologia , Células-Tronco Neoplásicas/patologia , Animais , Humanos
15.
Cell Cycle ; 15(9): 1276-87, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-26985855

RESUMO

Chronic Myeloid Leukemia (CML) is sustained by a small population of cells with stem cell characteristics known as Leukemic Stem Cells that are positive to BCR-ABL fusion protein, involved with several abnormalities in cell proliferation, expansion, apoptosis and cell cycle regulation. Current treatment options for CML involve the use of Tirosine Kinase Inhibitor (Imatinib, Nilotinib and Dasatinib), that efficiently reduce proliferation proliferative cells but do not kill non proliferating CML primitive cells that remain and contributes to the persistence of the disease. In order to understand the role of Cyclin Dependent Kinase Inhibitors in CML LSC permanence after TKI treatment, in this study we analyzed cell cycle status, the levels of several CDKIs and the subcellular localization of such molecules in different CML cell lines, as well as primary CD34(+)CD38(-)lin(-) LSC and HSC. Our results demonstrate that cellular location of p18(INK4c) and p57(Kip2) seems to be implicated in the antiproliferative activity of Imatinib and Dasatinib in CML cells and also suggest that the permanence of quiescent stem cells after TKI treatment could be associated with a decrease in p18(INK4c) and p57(Kip2) nuclear location. The differences in p18(INK4c)and p57(Kip2)activities in CML and normal stem cells suggest a different cell cycle regulation and provide a platform that could be considered in the development of new therapeutic options to eliminate LSC.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dasatinibe/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transporte Proteico/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos
16.
Thromb Res ; 137: 157-168, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26597044

RESUMO

INTRODUCTION: Endothelial cells (ECs) are an important component of the blood coagulation system because it maintains blood fluid. Because in patients with venous thromboembolic disease (VTD) a thrombophilic condition is not found sometimes, we investigated if endothelial colony-forming cells (ECFCs) from these patients have biological and functional abnormalities. PATIENTS AND METHODS: Human mononuclear cells (MNCs) were obtained from peripheral blood from patients with VTD and controls to obtain ECFCs. These cells were assayed for their immunophenotype and electron microscopy characteristics and their ability to form capillary-like structures and to produce pro-inflammatory and pro-angiogenic cytokines and reactive oxygen species (ROS). RESULTS: ECFCs appeared at 7 and 21 days of culture in VTD patients and controls, respectively. ECFCs increased 8-fold in patients and emerged 1 week earlier. No differences in the size of the colonies of ECFCs were found. Numbers and time of appearance of ECFCs was different between groups. ECFC-derived ECs (ECFC-ECs) of both groups expressed CD31, CD34, CD146, and CD-309 but none expressed CD45, CD14, or CD90. Interest CD34 was highly expressed in ECFC-ECs from patients. In both groups, ECFC-ECs showed similar capacity to form capillary-like structures but ECFC-ECs from patients had significant abnormalities in the mitochondrial membrane. We found a significant increase in ROS production in ECFC-ECs from patients. There were significant differences in cytokine profiles between VTD patients and controls. CONCLUSIONS: We found a dysfunctional state in ECFC from VTD patients resembling some characteristics of dysfunctional ECs. These findings may help to understand some pathophysiological aspects of VTD.


Assuntos
Citocinas/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Espécies Reativas de Oxigênio/metabolismo , Tromboembolia Venosa/metabolismo , Tromboembolia Venosa/patologia , Adulto , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Adulto Jovem
17.
Arch Med Res ; 45(4): 343-50, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24751333

RESUMO

BACKGROUND AND AIMS: In trying to contribute to our knowledge on the biology of hematopoietic stem cells (HSC) and hematopoietic progenitor cells (HPC) from pediatric acute myeloid leukemia (AML), in the present study we analyzed the expression of four cell surface antigens relevant to human hematopoiesis-CD90, CD96, CD117, and CD123-in bone marrow from pediatric AML patients and normal control subjects. METHODS: CD34(+) CD38(-) cells (enriched for HSC) and CD34(+) CD38(+) cells (enriched for HPC) were resolved on the basis of CD34 and CD38 expression. Concomitantly, expression of CD90 and CD96 or CD117 and CD123 was assessed by multicolor flow cytometry in each cell population. RESULTS: CD90 and CD117 were expressed in a low proportion of CD34(+) CD38(-) and CD34(+) CD38(+) cells and no significant differences were observed between normal marrow and AML at diagnosis. In contrast, CD96(+) cells and CD123(+) cells were found at significantly higher levels in both cell populations from AML at diagnosis, as compared to normal marrow. Levels of both cell surface markers after treatment remained higher than in normal marrow. DISCUSSION: These results show an increased frequency of CD96(+) and CD123(+) cells within the CD34(+) cell population from pediatric AML; this is consistent with the findings reported previously for adult AML. Our study supports the notion that expression of such antigens should be explored for their use as markers for diagnosis and prognosis.


Assuntos
Antígenos CD/biossíntese , Células-Tronco Hematopoéticas/metabolismo , Subunidade alfa de Receptor de Interleucina-3/biossíntese , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-kit/biossíntese , Antígenos Thy-1/biossíntese , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Medula Óssea/metabolismo , Medula Óssea/patologia , Criança , Pré-Escolar , Citometria de Fluxo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Humanos , Lactente , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Prognóstico
18.
Exp Hematol ; 42(7): 562-73.e3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24721609

RESUMO

Remarkable progress has been made in characterizing factors controlling lineage fate decisions of primitive progenitors that initiate the lymphoid program in bone marrow. However, the understanding of neonatal/adult differences in environmental signals that influence differentiation pathway stability is still incomplete. Our recent findings suggest that Toll-like receptors provide a mechanism for producing cells of the innate immune system from early stages of lymphoid development in mice. We now show that both human early multilymphoid progenitors and more differentiated lymphoid progenitors from normal adult bone marrow express TLR9. Furthermore, they respond to its ligation by upregulating the expression of IL-15Rß (CD122) and accelerating the production of functional natural killer (NK)-like cells. Proliferation of the presumed equivalent progenitor cells from umbilical cord blood was stimulated by CpG-containing oligonucleotides or herpes simplex virus, but the already robust NK-cell formation was unchanged. This new information adds to other known differences between neonatal and adult lymphoid progenitors and suggests only the latter replenish innate NK-like cells in response to Toll-like receptor agonists.


Assuntos
Células Matadoras Naturais/imunologia , Receptor Toll-Like 9/fisiologia , Animais , Proliferação de Células , Células Cultivadas , Humanos , Imunofenotipagem , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Gac Med Mex ; 149(6): 646-54, 2013.
Artigo em Espanhol | MEDLINE | ID: mdl-24276188

RESUMO

Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia associated with the t(9,22)(q34:q11) reciprocal translocation, also known as Philadelphia chromosome (Ph). As a result of such abnormality, a chimeric gene (bcr-abl) is produced that is translated into a chimeric protein (BCR-ABL), a constitutively activated tyrosine kinase. Major cell dysfunctions result from this abnormal kinase activity, including increased proliferation and reduced apoptosis. Based on the structure of BCR-ABL, several molecules have been designed that inhibit its kinase activity. Five such molecules have already been brought into the clinic for the treatment of Ph+ CML patients. Good results have been obtained in terms of patients' remission rates and quality of life. Some major problems, however, have been observed. Firstly, a significant proportion of patients develop resistance to the drugs; secondly, it is clear that such drugs affect most of the leukemic cells, but do not eliminate leukemia stem cells. Thus, important CML-related challenges remain to be solved in the near future.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Benzamidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Mesilato de Imatinib , Piperazinas/uso terapêutico , Pirimidinas/uso terapêutico
20.
Hematology ; 15(1): 11-20, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20132657

RESUMO

The goal of the present study was to investigate the specific way in which recombinant stimulatory cytokines modulate the cell cycle dynamics of primitive hematopoietic cells in vitro. A human cord blood-derived cell population, enriched for CD34(+) Lin(-) cells, was obtained by negative selection and cultured in liquid cultures, in the absence or presence of recombinant stimulatory cytokines. The proportion of cells in each phase of the cell cycle, as well as the expression of cyclin D3, cyclin-dependent kinase-4 (cdk4), p16, p21 and p27, was determined at different time points. At the onset of culture, the vast majority of the cells were in the G(0)/G(1) phase of the cell cycle. In the absence of cytokines, most cells remained in such a phase and no cell cycle activity was detected throughout the culture period, which correlated with the absence of population doublings. In the presence of cytokines, approximately four cell cycles, with a proportionate population doubling, were observed within the first 4 days of culture. In cultures incorporating cytokines, expression levels of cyclin D3 and cdk4 were higher than in their absence; in contrast, the levels of the cell cycle inhibitors p16 and p21 were higher in cultures without cytokines. Levels of p27 were also higher in the presence of cytokines. Our results indicate that the proliferation of primitive hematopoietic cells in liquid culture is promoted by recombinant cytokines via the induction of specific positive regulators of the cell cycle and down-regulation of particular cell cycle inhibitors.


Assuntos
Proteínas de Ciclo Celular/biossíntese , Citocinas/farmacologia , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Divisão Celular/efeitos dos fármacos , Separação Celular , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Meios de Cultura Livres de Soro , Proteínas Inibidoras de Quinase Dependente de Ciclina/biossíntese , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/biossíntese , Quinases Ciclina-Dependentes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Crescimento de Células Hematopoéticas/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Técnicas In Vitro , Recém-Nascido , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...