Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400469, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058017

RESUMO

The gut microbiome influences drug metabolism and therapeutic efficacy. Still, the lack of a general label-free approach for monitoring bacterial or host metabolic contribution hampers deeper insights. Here, a 2D nuclear magnetic resonance (NMR) approach is introduced that enables real-time monitoring of the metabolism of Levodopa (L-dopa), an anti-Parkinson drug, in both live bacteria and bacteria-host (Caenorhabditis elegans) symbiotic systems. The quantitative method reveals that discrete Enterococcus faecalis substrains produce different amounts of dopamine in live hosts, even though they are a single species and all have the Tyrosine decarboxylase (TyrDC) gene involved in L-dopa metabolism. The differential bacterial metabolic activity correlates with differing Parkinson's molecular pathology concerning alpha-synuclein aggregation as well as behavioral phenotypes. The gene's existence or expression is not an indicator of metabolic activity is also shown, underscoring the significance of quantitative metabolic estimation in vivo. This simple approach is widely adaptable to any chemical drug to elucidate pharmacomicrobiomic relationships and may help rapidly screen bacterial metabolic effects in drug development.

2.
Chem Biodivers ; 21(7): e202400836, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38693058

RESUMO

Herein, we describe the synthesis of the proposed structure of the caffeamide alkaloid bassiamide A. The amide moiety of bassiamide A was readily formed via an amide coupling reaction between caffeic acid and the known N-(3-aminopropyl)-3-methylbutanamide. However, the spectral data of the synthesized bassiamide A did not agree with that of a previous study. The structure of the synthesized bassiamide A was confirmed using combined two-dimensional NMR analysis. Extended analyses of the bioactivity of the synthesized bassiamide A revealed its efficacy in protecting dopaminergic neurons from MPP+-induced neurotoxicity in Caenorhabditis elegans. Additionally, treatment with bassiamide A notably ameliorated the impaired food-sensing ability and locomotion of Caenorhabditis elegans, suggesting a protective effect on the functionality of dopaminergic neurons.


Assuntos
Caenorhabditis elegans , Ácidos Cafeicos , Fármacos Neuroprotetores , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/isolamento & purificação , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/síntese química , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Estrutura Molecular , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/síntese química , Alcaloides/isolamento & purificação , Relação Estrutura-Atividade , 1-Metil-4-fenilpiridínio
3.
J Asian Nat Prod Res ; 25(5): 446-455, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35980025

RESUMO

2-(Quinoline-8-carboxamido)benzoic acid (2-QBA; 1) is a natural quinoline alkaloid isolated from the deep-sea-derived fungus Aspergillus sp. SCSIO06786. Alkaloid 1 was synthesized by an amidation reaction of 8-quinolinecaroxylic acid with methyl anthranilate, followed by hydrolysis. The neuroprotective properties of 1 were evaluated using a Caenorhabditis elegans Parkinson's disease model, which revealed that 1 significantly ameliorated 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neurodegeneration in a dose-dependent manner. MPP+-induced behavioral defects in worms, including impaired locomotion and basal slowing ability, were restored by treatment with 1. We further demonstrated that treatment with 1 modulates the formation of neurotoxic α-synuclein oligomers by suppressing α-synuclein expressions and enhancing proteasome activity. These results suggest that 1 is a promising therapeutic candidate for the treatment of Parkinson's disease.


Assuntos
Alcaloides , Fármacos Neuroprotetores , Doença de Parkinson , Quinolinas , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Alcaloides/farmacologia , Caenorhabditis elegans/metabolismo , 1-Metil-4-fenilpiridínio , Fungos/metabolismo , Quinolinas/farmacologia , Quinolinas/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia
4.
Chem Biodivers ; 19(5): e202100808, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35307920

RESUMO

Evodileptin B (1) is a natural anthranilate derivative isolated from the ethanol extract of the aerial parts of Evodia lepta (Spreng.) Merr., a traditional medicinal plant of the family Rutaceae. We readily synthesized 1 via the amidation of phloretic with methyl anthranilate and evaluate its neuroprotective activity using a C. elegans Parkinson's disease (PD) model. The results showed that evodilpetin B ameliorated MPP+ -induced dopaminergic (DA) neurodegeneration in a dose-dependent manner. Evodileptin B treatment also significantly improved the DA neurotransmission-related behavioral defects such as reduced locomotory and food-sensing ability of worms under MPP+ exposure conditions, suggesting its potential application for the functional restoration of DA neurons. In addition, we found that 1 has an ability to regulate aggregation of α-synuclein by increasing proteasome activity in the human α-synuclein-expressing mutant worms. These results demonstrate that evodileptin B has strong neuroprotective properties and may be useful in the treatment of PD.


Assuntos
Evodia , Fármacos Neuroprotetores , Doença de Parkinson , Rutaceae , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/uso terapêutico , ortoaminobenzoatos
5.
Molecules ; 26(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34641508

RESUMO

A concise and efficient synthesis of the proposed structure of aaptoline A, a 7,8-dihydroxyquinoline derived from a marine sponge, was accomplished in seven steps with a 52% overall yield. A key feature of the synthesis is the high-yielding Ag(I)-catalyzed cycloisomerization of the N-propargylaniline precursor to afford the quinoline carboxylate skeleton from acid-labile methyl aminobenzoate. However, the spectral data of the synthesized aaptoline A were not consistent with those of previous studies. The structure of the synthesized aaptoline A was confirmed by combined 2D NMR analysis. Additional studies on the bioactivity of the synthesized aaptoline A revealed that it has the ability to protect dopaminergic neurons against MPP+-induced neurotoxicity in C. elegans. In addition, impaired food-sensing ability and travel distance capability in C. elegans were significantly ameliorated by aaptoline A treatment, suggesting that aaptoline A can protect dopaminergic neurons both morphologically and functionally.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Hidroxiquinolinas/química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/síntese química , Poríferos/química
6.
Neurosci Lett ; 747: 135623, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33482307

RESUMO

In this study, we evaluated the protective effects of damaurone D (DaD), a dihydropyranoaurone compound, on dopaminergic (DA) neurodegeneration in Caenorhabditis elegans. The results showed that DaD treatment could successfully increase the survival rate of the worms under MPP+ exposure. Additionally, DaD protected against the MPP+-induced neurodegeneration in all eight DA neurons of the worms. Similarly, diminished DA neuronal damage was observed in the DaD-fed transgenic mutant overexpressing tyrosine hydroxylase. In addition, the corresponding behavioral impairment induced by MPP+ was strongly improved in the DaD treated worms, implying DaD has protective properties for DA neuronal function. Then, we further investigated the effect of DaD on α-synuclein aggregation, a key pathogenesis of Parkinson's disease (PD). In this study, DaD reduced the fluorescence signals of transgenic mutants that carried YFP-fused α-synuclein. A similar reduction in expressions of α-synuclein was observed by Western blot. Interestingly, our result from the dot-blot assay demonstrated that the formation of oligomers was significantly attenuated by the DaD treatment. Furthermore, DaD improved the abnormal fat storage and shortened lifespan of the animals with the same genetic background which supports the beneficial action of DaD on the α-synuclein-induced DA neurodegeneration. These results demonstrate that DaD could protect against both chemical- and genetic-induced DA neurodegeneration possibly through the modulation of oxidative stress, DA metabolism, and α-synuclein toxicity. Based on our present findings, we suggest that DaD might have a potential therapeutic role in Parkinson's disease.


Assuntos
Benzofuranos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/tratamento farmacológico , Doença de Parkinson/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Degeneração Neural/patologia , Fármacos Neuroprotetores/farmacologia
7.
Biofactors ; 46(6): 1041-1048, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33179346

RESUMO

In this study, we investigated the longevity effects of hispidol, a 6,4'-dihydroxyaurone, using the Caenorhabditis elegans model system. Our lifespan assay data revealed that hispidol could prolong the lifespan of wild-type worms under normal culture condition. Moreover, hispidol increased the survival rate of the worms against a heat stress condition through up-regulated expressions of HSP-16.2. Similarly, hispidol protected worms from paraquat-induced oxidative stress. We also found that the hispidol elevated the activities of antioxidant enzymes, thereby attenuating the generation of intracellular reactive oxygen species. These results suggest that the enhancement of lifespan and stress resistance by the hispidol treatment might be attributed to its strong in vivo antioxidant capacity and regulation of stress proteins. Further tests on the aging-related factors revealed that hispidol could regulate the speed of pharyngeal pumping, indicating the association of dietary restriction with the hispidol-mediated longevity. However, there were no significant alterations in the body length of the worms between the groups. We then investigated the effects of hispidol on body movement and lipofuscin accumulation in aged worms. Interestingly, these healthspan parameters were strongly improved by the hispidol treatment. Our genetic studies showed no significant change in the lifespan of the daf-16 null mutants by hispidol supplementation. In addition, enhanced nuclear translocation of DAF-16 was observed in the hispidol-fed DAF-16::GFP fused transgenic mutants, suggesting the requirement of DAF-16/FOXO activation for the longevity effect of hispidol.


Assuntos
Antioxidantes/farmacologia , Benzofuranos/farmacologia , Compostos de Benzilideno/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo
8.
Aging Cell ; 18(1): e12867, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30575269

RESUMO

Resveratrol (RSV) extends the lifespan of various organisms through activation of sirtuin. However, whether RSV-mediated longevity is entirely dependent upon sirtuin is still controversial. Thus, understanding additional mechanisms concerning the genetic requirements for the biological activity of RSV needs to be clarified to utilize the beneficial effects of RSV. In this study using Caenorhabditis elegans as a model system, we found that MPK-1 (an ERK homolog) signaling is necessarily required for RSV-mediated longevity of sir-2.1/sirtuin mutants as well as for wild-type worms. We demonstrated that MPK-1 contributes to RSV-mediated longevity through nuclear accumulation of SKN-1 in a SIR-2.1/DAF-16 pathway-independent manner. The positive effect of RSV in regulating lifespan was completely abolished by RNA interference against mpk-1 in the sir-2.1 and daf-16 mutants, strongly indicating that the MPK-1/SKN-1 pathway is involved in RSV-mediated longevity, independently of SIR-2.1/DAF-16. We additionally found that RSV protected worms from oxidative stress via MPK-1. In addition to organismal aging, RSV prevented the age-associated loss of mitotic germ cells, brood size, and reproductive span through MPK-1 in C. elegans germline. Therefore, our findings not only provide new mechanistic insight into the controversial effects of RSV on organismal longevity, but additionally have important implications in utilizing RSV to improve the outcome of aging-related diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Longevidade/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Resveratrol/farmacologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Mutação/genética , Reprodução/efeitos dos fármacos , Resveratrol/química
9.
Mol Cells ; 41(12): 1052-1060, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30453732

RESUMO

Triclosan (TCS) is a phenolic antimicrobial chemical used in consumer products and medical devices. Evidence from in vitro and in vivo animal studies has linked TCS to numerous health problems, including allergic, cardiovascular, and neurodegenerative disease. Using Caenorhabditis elegans as a model system, we here show that short-term TCS treatment (LC50: ~0.2 mM) significantly induced mortality in a dose-dependent manner. Notably, TCS-induced mortality was dramatically suppressed by co-treatment with non-ionic surfactants (NISs: e.g., Tween 20, Tween 80, NP-40, and Triton X-100), but not with anionic surfactants (e.g., sodium dodecyl sulfate). To identify the range of compounds susceptible to NIS inhibition, other structurally related chemical compounds were also examined. Of the compounds tested, only the toxicity of phenolic compounds (bisphenol A and benzyl 4-hydroxybenzoic acid) was significantly abrogated by NISs. Mechanistic analyses using TCS revealed that NISs appear to interfere with TCS-mediated mortality by micellar solubilization. Once internalized, the TCS-micelle complex is inefficiently exported in worms lacking PMP-3 (encoding an ATP-binding cassette (ABC) transporter) transmembrane protein, resulting in overt toxicity. Since many EDCs and surfactants are extensively used in commercial products, findings from this study provide valuable insights to devise safer pharmaceutical and nutritional preparations.


Assuntos
Disruptores Endócrinos/toxicidade , Tensoativos/farmacologia , Triclosan/toxicidade , Animais , Caenorhabditis elegans , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fenóis/toxicidade
10.
J Pharm Pharmacol ; 70(10): 1423-1429, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29992572

RESUMO

OBJECTIVES: This study was conducted to evaluate the longevity potential of damaurone D (DaD), a component of the damask rose, in the animal model Caenorhabditis elegans. METHODS: To investigate the effect of DaD on the longevity, lifespan assay was carried out. Fluorescence intensity of transgenic mutants was quantified to test the expression levels of stress proteins. A genetic study using single gene knockout mutants was designed to determine the target genes of DaD. KEY FINDINGS: DaD prolonged the mean lifespan of wild-type nematodes by 16.7% under normal conditions and also improved their stress endurance under thermal, osmotic, and oxidative stress conditions. This longevity-promoting effect could be attributed to in vivo antioxidant capacity and its up-regulating effects on the expressions of stress-response proteins such as SOD-3 and HSP-16.2. In addition, DaD treatment attenuated food intake, body length, lipofuscin accumulation and age-dependent decline of motor ability. Gene-specific mutant studies showed the involvement of genes such as daf-2, age-1, and daf-16. CONCLUSIONS: These results suggest that DaD has beneficial effects on the longevity, and thus it can be a valuable plant origin lead compound for the development of nutraceutical preparations targeting ageing and ageing-related diseases.


Assuntos
Benzofuranos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Choque Térmico/metabolismo , Longevidade/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ingestão de Alimentos/efeitos dos fármacos , Fatores de Transcrição Forkhead/genética , Técnicas de Inativação de Genes , Lipofuscina/metabolismo , Destreza Motora/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Receptor de Insulina/genética , Regulação para Cima/efeitos dos fármacos
11.
Bio Protoc ; 8(6)2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29744374

RESUMO

Reactive oxygen species (ROS) are generated during normal metabolic processes under aerobic conditions. Since ROS production initiates harmful radical chain reactions on cellular macromolecules, including lipid peroxidation, DNA mutation, and protein denaturation, it has been implicated in a wide spectrum of diseases such as cancer, cardiovascular disease, ischemia-reperfusion and aging. Over the past several decades, antioxidants have received explosive attention regarding their protective potential against these deleterious reactions. Accordingly, many analytical methodologies have been developed for the evaluation of the antioxidant capacity of compounds or complex biological samples. Herein, we introduce a simple and convenient method to detect in vivo intracellular ROS levels photometrically in Caenorhabditis elegans using 2',7'-dichlorofluorescein diacetate (H2DCFDA), a cell permeant tracer.

12.
FEBS J ; 285(14): 2590-2604, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29775245

RESUMO

Notch receptor signaling is a highly conserved cell communication system in most multicellular organisms and plays a critical role at several junctures in animal development. In Caenorhabditis elegans,GLP-1/Notch signaling is essential for both germline stem cell maintenance and germ cell proliferation during gonad development. Here, we show that subunits (POLA-1, DIV-1, PRI-1, and PRI-2) of the DNA polymerase alpha-primase complex are required for germ cell proliferation in response to GLP-1/Notch signaling in different tissues at different developmental stages. Specifically, genetic and functional analyses demonstrated that (a) maternally contributed DIV-1 (regulatory subunit) is indispensable non-cell autonomously for GLP-1/Notch-mediated germ cell proliferation during early larval development, whereas POLA-1 (catalytic subunit) and two primase subunits, PRI-1 and PRI-2, do not appear to be essential; (b) germline POLA-1, PRI-1, and PRI-2 play a crucial role in GLP-1/Notch-mediated maintenance of proliferative cell fate during adulthood, while DIV-1 is dispensable; and (c) germline POLA-1, DIV-1, PRI-1, and PRI-2 function in tandem with PUF (Pumilio/FBF) RNA-binding proteins to maintain germline stem cells in the adult gonad. These findings suggest that the subunits of the DNA polymerase alpha-primase complex exhibit both discrete and shared functions in GLP-1/Notch or PUF-mediated germ cell dynamics in C. elegans. These findings link the biological functions of DNA replication machineries to signals that maintain a stem cell population, and may have further implications for Notch-dependent tumors.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , DNA Polimerase I/genética , DNA Primase/genética , Gônadas/metabolismo , Óvulo/metabolismo , Receptores Notch/genética , Espermatozoides/metabolismo , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Comunicação Celular , Diferenciação Celular , Proliferação de Células , DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/citologia , Gônadas/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Óvulo/citologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Espermatozoides/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo
13.
Sci Rep ; 7(1): 12592, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974696

RESUMO

Triclosan (TCS), an antimicrobial chemical with potential endocrine-disrupting properties, may pose a risk to early embryonic development and cellular homeostasis during adulthood. Here, we show that TCS induces toxicity in both the nematode C. elegans and human mesenchymal stem cells (hMSCs) by disrupting the SKN-1/Nrf2-mediated oxidative stress response. Specifically, TCS exposure affected C. elegans survival and hMSC proliferation in a dose-dependent manner. Cellular analysis showed that TCS inhibited the nuclear localization of SKN-1/Nrf2 and the expression of its target genes, which were associated with oxidative stress response. Notably, TCS-induced toxicity was significantly reduced by either antioxidant treatment or constitutive SKN-1/Nrf2 activation. As Nrf2 is strongly associated with aging and chemoresistance, these findings will provide a novel approach to the identification of therapeutic targets and disease treatment.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Fatores de Transcrição/genética , Triclosan/farmacologia , Animais , Antioxidantes/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Relação Dose-Resposta a Droga , Disruptores Endócrinos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
14.
Pharm Biol ; 55(1): 481-486, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27937005

RESUMO

CONTEXT: The twigs of Sorbus alnifolia (Sieb. et Zucc.) K. Koch (Rosaceae) have been used to treat neurological disorders as a traditional medicine in Korea. However, there are limited data describing the efficacy of S. alnifolia in Parkinson's disease (PD). OBJECTIVE: This study was conducted to identify the protective effects of the methanol extracts of S. alnifolia (MESA) on the dopaminergic (DA) neurodegeneration in Caenorhabditis elegans. MATERIALS AND METHODS: To test the neuroprotective action of MESA, viability assay was performed after 48 h exposure to 1-methyl-4-phenylpyridine (MMP+) in PC12 cells and C. elegans (400 µM and 2 mM of MMP+, respectively). Fluorescence intensity was quantified using transgenic mutants such as BZ555 (Pdat-1::GFP) and and UA57 (Pdat-1::GFP and Pdat-1::CAT-2) to determine MESA's effects on DA neurodegeneration in C. elegans. Aggregation of α-synuclein was observed using NL5901 strain (unc-54p::α-synuclein::YFP). MESA's protective effects on the DA neuronal functions were examined by food-sensing assay. Lifespan assay was conducted to test the effects of MESA on the longevity. RESULTS: MESA restored MPP+-induced loss of viability in both PC12 cells and C. elegans (85.8% and 54.9%, respectively). In C. elegans, MESA provided protection against chemically and genetically-induced DA neurodegeneration, respectively. Moreover, food-sensing functions were increased 58.4% by MESA in the DA neuron degraded worms. MESA also prolonged the average lifespan by 25.6%. However, MESA failed to alter α-synuclein aggregation. DISCUSSION AND CONCLUSIONS: These results revealed that MESA protects DA neurodegeneration and recovers diminished DA neuronal functions, thereby can be a valuable candidate for the treatment of PD.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Degeneração Neural , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Sorbus/química , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Comportamento Alimentar/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Metanol/química , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/isolamento & purificação , Células PC12 , Fitoterapia , Componentes Aéreos da Planta , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Agregados Proteicos , Ratos , Solventes/química , Fatores de Tempo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
15.
Chin J Nat Med ; 14(5): 335-42, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27478096

RESUMO

The present study investigated the effects and underlying mechanism of ethylacetate fraction of Ribes fasciculatum (ERF) on the lifespan and stress tolerance using a Caenorhabditis elegans model. The longevity activity of ERF was determined by lifespan assay under normal culture condition. The survival rate of nematodes under various stress conditions was assessed to validate the effects of ERF on the stress tolerance. To determine the antioxidant potential of ERF, the superoxide dismutase (SOD) activities and intracellular reactive oxygen species (ROS) levels were investigated. The ERF-mediated change in SOD-3 expression was examined using GFP-expressing transgenic strain. The effects of ERF on the aging-related factors were investigated by reproduction assay and pharyngeal pumping assay. The intestinal lipofuscin levels of aged nematodes were also measured. The mechanistic studies were performed using selected mutant strains. Our results indicated that ERF showed potent lifespan extension effects on the wild-type nematode under both normal and various stress conditions. The ERF treatment also enhanced the activity and expression of superoxide dismutase (SOD) and attenuated the intracellular ROS levels. Moreover, ERF-fed nematodes showed decreased lipofuscin accumulation, indicating ERF might affect age-associated changes in C. elegans. The results of mechanistic studies indicated that there was no significant lifespan extension in ERF-treated daf-2, age-1, sir-2.1, and daf-16 null mutants, suggesting that they were involved in ERF-mediated lifespan regulation. In conclusion, R. fasciculatum confers increased longevity and stress resistance in C. elegans via SIR-2.1-mediated DAF-16 activation, dependent on the insulin/IGF signaling pathway.


Assuntos
Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Ribes/química , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Longevidade/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
BMB Rep ; 49(2): 93-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26303971

RESUMO

Germline stem cells (GSCs) are the best understood adult stem cell types in the nematode Caenorhabditis elegans, and have provided an important model system for studying stem cells and their cell fate in vivo, in mammals. In this review, we propose a mechanism that controls GSCs and their cell fate through selective activation, repression and mobilization of the specific mRNAs. This mechanism is acutely controlled by known signal transduction pathways (e.g., Notch signaling and Ras-ERK MAPK signaling pathways) and P granule (analogous to mammalian germ granule)-associated mRNA regulators (FBF-1, FBF-2, GLD-1, GLD-2, GLD-3, RNP-8 and IFE-1). Importantly, all regulators are highly conserved in many multi-cellular animals. Therefore, GSCs from a simple animal may provide broad insight into vertebrate stem cells (e.g., hematopoietic stem cells) and their cell fate specification. [BMB Reports 2016; 49(2): 93-98].


Assuntos
Linhagem da Célula/genética , Células Germinativas/citologia , Homeostase/genética , Células-Tronco/citologia , Animais , Células Germinativas/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/metabolismo , Ativação Transcricional/genética
17.
Biomol Ther (Seoul) ; 23(6): 582-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26535084

RESUMO

Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan.

18.
Artigo em Inglês | MEDLINE | ID: mdl-25821490

RESUMO

Catalpol is an effective component of rehmannia root and known to possess various pharmacological properties. The present study was aimed at investigating the potential effects of catalpol on the lifespan and stress tolerance using C. elegans model system. Herein, catalpol showed potent lifespan extension of wild-type nematode under normal culture condition. In addition, survival rate of catalpol-fed nematodes was significantly elevated compared to untreated control under heat and oxidative stress but not under hyperosmolality conditions. We also found that elevated antioxidant enzyme activities and expressions of stress resistance proteins were attributed to catalpol-mediated increased stress tolerance of nematode. We further investigated whether catalpol's longevity effect is related to aging-related factors including reproduction, food intake, and growth. Interestingly, catalpol exposure could attenuate pharyngeal pumping rate, indicating that catalpol may induce dietary restriction of nematode. Moreover, locomotory ability of aged nematode was significantly improved by catalpol treatment, while lipofuscin levels were attenuated, suggesting that catalpol may affect age-associated changes of nematode. Our mechanistic studies revealed that mek-1, daf-2, age-1, daf-16, and skn-1 are involved in catalpol-mediated longevity. These results indicate that catalpol extends lifespan and increases stress tolerance of C. elegans via DAF-16/FOXO and SKN-1/Nrf activation dependent on insulin/IGF signaling and JNK signaling.

19.
Biomol Ther (Seoul) ; 23(1): 77-83, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25593647

RESUMO

The seed of Vigna angularis has long been cultivated as a food or a folk medicine in East Asia. Genistein (4',5,7-trihydroxyisoflavone), a dietary phytoestrogen present in this plant, has been known to possess various biological properties. In this study, we investigated the possible lifespan-extending effects of genistein using Caenorhabditis elegans model system. We found that the lifespan of nematode was significantly prolonged in the presence of genistein under normal culture condition. In addition, genistein elevated the survival rate of nematode against stressful environment including heat and oxidative conditions. Further studies demonstrated that genistein-mediated increased stress tolerance of nematode could be attributed to enhanced expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). Moreover, we failed to find genistein-induced significant change in aging-related factors including reproduction, food intake, and growth, indicating genistein exerts longevity activity independent of affecting these factors. Genistein treatment also led to an up-regulation of locomotory ability of aged nematode, suggesting genistein affects healthspan as well as lifespan of nematode. Our results represent that genistein has beneficial effects on the lifespan of C. elegans under both of normal and stress condition via elevating expressions of stress resistance proteins.

20.
Int J Biochem Mol Biol ; 5(1): 11-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24955284

RESUMO

Ectopic expression of multi-transgenic copies can result in reduced expression of the transgene and can induce silence of endogenous gene; this process is called as co-suppression. Using a transgene-mediated co-suppression technique, we demonstrated the biological function of DNA topoisomerase-1 (top-1) in C. elegans development. Introduction of full-length top-1 transgene sufficiently induced the co-suppression of endogenous top-1 gene, causing embryonic lethality and abnormal germline development. We also found that the co-suppression of top-1 gene affected morphogenesis, lifespan and larval growth that were not observed in top-1 (RNAi) animals. Strikingly, co-suppression effects were significantly reduced by the elimination of top-1 introns, suggesting that efficient co-suppression may require intron(s) in C. elegans. Sequence analysis revealed that the introns 1 and 2 of top-1 gene possess consensus binding sites for several transcription factors, including MAB-3, LIN-14, TTX-3/CEH-10, CEH-1, and CEH-22. Among them, we examined a genetic link between ceh-22 and top-1. The ceh-22 is partially required for the specification of distal tip cells (DTC), which functions as a stem cell niche in the C. elegans gonad. Intriguingly, top-1 (RNAi) significantly enhanced DTC loss in ceh-22 mutant gonads, indicating that top-1 may play an important role in CEH-22-mediated DTC fate specification. Therefore, our findings suggest that transgene-mediated co-suppression facilitates the silencing of the specific genes and the study of gene function in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...