Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soc Sci Med ; 332: 116101, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527567

RESUMO

The COVID-19 pandemic has exacerbated stress and psychological distress among adults with children, with certain populations experiencing a greater mental health burden. The expanded Child Tax Credit (CTC) under the 2021 American Rescue Plan Act provided temporary relief to families with children through monthly payments from July through December 2021, offering a unique opportunity to examine the impact of a near-universal cash transfer on adult psychological well-being in the United States. We use the Household Pulse Survey Waves 28-41 (April 14, 2021 to January 10, 2022) to analyze the CTC expansion and Waves 34-42 (July 21, 2021 to February 7, 2022) to examine the expiration of the expanded CTC to investigate the effects of the expanded CTC and its expiration on psychological distress of adults in households with children and its differential effects by gender, education, marital status, and race and ethnicity (N = 167,772). We employ a difference-in-difference methodology by leveraging the policy-induced variation in the additional credits that households are eligible for. Our results indicate that the expanded CTC led to a significant reduction in the percentage of having at least mild symptoms of psychological distress in the overall sample, especially among female, single, married, and Hispanic adults. No significant effects were found on the rate of moderate or severe psychological distress symptoms, suggesting that more severe forms of psychological distress may require more comprehensive and long-term interventions. We find that more adults experienced moderate to severe psychological distress after the monthly CTC payments ended. We discuss the role of the expanded CTC in buffering mental health crises during the pandemic and the implications of the heterogeneous policy effects by subgroups.


Assuntos
COVID-19 , Bem-Estar Psicológico , Adulto , Humanos , Criança , Feminino , Estados Unidos , COVID-19/epidemiologia , Pandemias , Saúde Mental , Impostos , Estresse Psicológico/etiologia , Estresse Psicológico/psicologia
2.
Nanoscale Horiz ; 5(5): 808-831, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159194

RESUMO

Rapidly increasing markets for electric vehicles (EVs), energy storage for backup support systems and high-power portable electronics demand batteries with higher energy densities and longer cycle lives. Among the various electrochemical energy storage systems, lithium-sulfur (Li-S) batteries have the potential to become the next generation rechargeable batteries because of their high specific energy at low cost. However, the development of practical Li-S batteries for commercial products has been challenged by several obstacles, including unstable cycle life and low sulfur utilization. Only a few studies have considered the importance of low electrolyte and high sulfur loading to improve the overall energy densities of Li-S cells. This article reviews the recent developments of Li-S batteries that can meet the benchmarks of practical parameters and exceed the practical energy density of lithium-ion batteries (LIBs) including areal sulfur loading of at least 4 mg cm-2, electrolyte to sulfur ratio of less than 10 µL mg-1, and high cycling stability of over 300 cycles. This review presents the advancements in each component in Li-S batteries, including the enhancement of the electrochemical properties of sulfur cathodes, lithium anodes, or electrolytes. Also identified are several important strategies of nanoengineering and how they address the practical limitations of Li-S batteries to compete against LIBs. Additionally, perspectives on fundamentals, technology, and materials are provided for the development of Li-S batteries based on nanomaterials and nanoengineering so that they can enter the market of high energy density rechargeable storage systems.

3.
Nat Nanotechnol ; 13(6): 521, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29618842

RESUMO

In the version of this Article originally published, a technical error in typesetting led to the traces in Fig. 3a being trimmed and made to overlap. The figure has now been corrected with the traces as supplied by the authors; the original and corrected Fig. 3a are shown below. Also, in the last paragraph of the section "Mechanistic study on Li diffusion in MoS2" the authors incorrectly included the term 'high-concentration' in the text "the Li diffusion will be dominated by high-concentration Li migration on the surface of T-MoS2 with a much smaller energy barrier (0.155 eV) to overcome". This term has now been removed from all versions of the Article. Finally, the authors have added an extra figure in the Supplementary Information (Supplementary Fig. 19) to show galvanostatic tests at 1 and 3 mA cm-2 for the MoS2-coated Li symmetric cells. The caption to Fig. 3 of the Article has been amended to reflect this, with the added wording "Galvanostatic tests at 1 and 3 mA cm-2 can be found in Supplementary Fig. 19."

4.
Nat Nanotechnol ; 13(4): 337-344, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29434261

RESUMO

Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher (~2,600 Wh kg-1). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that ~10-nm-thick two-dimensional (2D) MoS2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS2-coated Li-metal cell operates at a current density of 10 mA cm-2 with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS2-coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of ~589 Wh kg-1 and a Coulombic efficiency of ~98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.

5.
RSC Adv ; 8(14): 7414-7421, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35539106

RESUMO

The high theoretical specific capacity of nickel oxide (NiO) makes it attractive as a high-efficiency electrode material for electrochemical energy storage. However, its application is limited due to its inferior electrochemical performance and complicated electrode fabrication process. Here, we developed an in situ fabrication of a graphene-coated, three-dimensional (3D) NiO-Ni structure by simple chemical vapor deposition (CVD). We synthesized NiO layers on Ni foam through a thermal oxidation process; subsequently, we grew graphene layers directly on the surface of NiO after a hydrogen-assisted reduction process. The uniform graphene coating renders high electrical conductivity, structural flexibility and high elastic modulus at atomic thickness. The graphene-coated 3D NiO-Ni structure delivered a high areal density of ∼23 mg cm-2. It also exhibits a high areal capacity of 1.2 mA h cm-2 at 0.1 mA cm-2 for its Li-ion battery performance. The high capacity is attributed to the high surface area of the 3D structure and the unique properties of the graphene layers on the NiO anode. Since the entire process is carried out in one CVD system, the fabrication of such a graphene-coated 3D NiO-Ni anode is simple and scalable for practical applications.

6.
Sci Rep ; 7(1): 16121, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170514

RESUMO

Two-dimensional transition metal dichalcogenides (2D TMDs) have gained great interest due to their unique tunable bandgap as a function of the number of layers. Especially, single-layer tungsten disulfides (WS2) is a direct band gap semiconductor with a gap of 2.1 eV featuring strong photoluminescence and large exciton binding energy. Although synthesis of MoS2 and their layer dependent properties have been studied rigorously, little attention has been paid to the formation of single-layer WS2 and its layer dependent properties. Here we report the scalable synthesis of uniform single-layer WS2 film by a two-step chemical vapor deposition (CVD) method followed by a laser thinning process. The PL intensity increases six-fold, while the PL peak shifts from 1.92 eV to 1.97 eV during the laser thinning from few-layers to single-layer. We find from the analysis of exciton complexes that both a neutral exciton and a trion increases with decreasing WS2 film thickness; however, the neutral exciton is predominant in single-layer WS2. The binding energies of trion and biexciton for single-layer WS2 are experimentally characterized at 35 meV and 60 meV, respectively. The tunable optical properties by precise control of WS2 layers could empower a great deal of flexibility in designing atomically thin optoelectronic devices.

7.
Nanotechnology ; 27(49): 495401, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827350

RESUMO

The advent of advanced electrode materials has led to performance enhancement of traditional lithium ion batteries (LIBs). We present novel binder-free MoS2 coated three-dimensional carbon nanotubes (3D CNTs) as an anode in LIBs. Scanning transmission electron microscopy analysis shows that vertically oriented MoS2 nanoflakes are strongly bonded to CNTs, which provide a high surface area and active electrochemical sites, and enhanced ion conductivity at the interface. The electrochemical performance shows a very high areal capacity of ~1.65 mAh cm-2 with an areal density of ~0.35 mg cm-2 at 0.5 C rate and coulombic efficiency of ~99% up to 50 cycles. The unique architecture of 3D CNTs-MoS2 is indicative to be a promising anode for next generation Li-ion batteries with high capacity and long cycle life.

8.
Nanotechnology ; 27(10): 105402, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26861692

RESUMO

Flexible lithium-ion batteries (LIBs) have received considerable attention as energy sources for wearable electronics. In recent years, much effort has been devoted to study light-weight, robust, and flexible electrodes. However, high areal and volumetric capacities need to be achieved for practical power and energy densities. In this paper, we report the use of three-dimensional (3D) free-standing carbon nanotubes (CNTs) as a current collector-free anode to demonstrate flexible LIBs with enhanced areal and volumetric capacities. High density CNTs grown on copper (Cu) mesh are transferred to a flexible graphene/polyethylene terephthalate  film and integrated into a flexible LIB. A fully flexible LIB cell integrated with the 3D CNT anode delivers a high areal capacity of 0.25 mAh cm(-2) at 0.1C and shows fairly consistent open circuit voltage under bending. These findings may provide significant advances in the application of flexible LIB based electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...