Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nano Lett ; 24(4): 1223-1230, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38232153

RESUMO

Hybridizing a microwave mode with a quantum state requires precise frequency matching of a superconducting microwave resonator and the corresponding quantum object. However, fabrication always brings imperfections in geometry and material properties, causing deviations from the desired operating frequencies. An effective and universal strategy for their resonant coupling is to tune the frequency of a resonator, as quantum states like phonons are hardly tunable. Here, we demonstrate gate-tunable, titanium-nitride (TiN)-based superconducting resonators by implementing a nanowire inductor whose kinetic inductance is tuned via the gate-controlled supercurrent (GCS) effect. We investigate their responses for different gate biases and observe 4% (∼150 MHz) frequency tuning with decreasing internal quality factors. We also perform temperature-controlled experiments to support phonon-related mechanisms in the GCS effect and the resonance tuning. The GCS effect-based method proposed in this study provides an effective route for locally tunable resonators that can be employed in various hybrid quantum devices.

3.
Nano Lett ; 22(13): 5459-5465, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35708318

RESUMO

Nanomechanical resonances coupled to microwave cavities can be excited, measured, and controlled simultaneously using electromechanical back-action phenomena. Examples of these effects include sideband cooling and amplification, which are commonly described through linear equations of motion governed by an effective optomechanical Hamiltonian. However, this linear approximation is invalid when the pump-induced cavity microwave field is large enough to trigger optomechanical nonlinearities, resulting in phenomena like frequency combs. Here, we employ a niobium-based superconducting electromechanical device to explore the generation of microwave frequency combs. We observe the formation of combs around a microwave resonant frequency (3.78 GHz) with 8-MHz frequency spacing, equal to the mechanical resonant frequency. We investigate their dynamics for different optomechanical parameters, including detuning, pump powers, and cavity decay rates. Our experimental results show excellent agreement with numerical modeling. These electromechanical frequency combs can be beneficial in nanomechanical sensing applications that require precise electrical tracking of mechanical resonant frequencies.

4.
Nano Lett ; 21(4): 1800-1806, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33555879

RESUMO

Nanoscale electromechanical coupling provides a unique route toward control of mechanical motions and microwave fields in superconducting cavity electromechanical devices. However, conventional devices composed of aluminum have presented severe constraints on their operating conditions due to the low superconducting critical temperature (1.2 K) and magnetic field (0.01 T) of aluminum. To enhance their potential in device applications, we fabricate a superconducting electromechanical device employing niobium and demonstrate a set of cavity electromechanical dynamics, including back-action cooling and amplification, and electromechanically induced reflection at 4.2 K and in strong magnetic fields up to 0.8 T. Niobium-based electromechanical transducers operating at this temperature could potentially be employed to realize compact, nonreciprocal microwave devices in place of conventional isolators and cryogenic amplifiers. Moreover, with their resilience to magnetic fields, niobium devices utilizing the electromechanical back-action effects could be used to study spin-phonon interactions for nanomechanical spin-sensing.

5.
Nature ; 564(7735): 229-233, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542167

RESUMO

Guiding waves through a stable physical channel is essential for reliable information transport. However, energy transport in high-frequency mechanical systems, such as in signal-processing applications1, is particularly sensitive to defects and sharp turns because of back-scattering and losses2. Topological phenomena in condensed matter systems have shown immunity to defects and unidirectional energy propagation3. Topological mechanical metamaterials translate these properties into classical systems for efficient phononic energy transport. Acoustic and mechanical topological metamaterials have so far been realized only in large-scale systems, such as arrays of pendulums4, gyroscopic lattices5,6, structured plates7,8 and arrays of rods, cans and other structures acting as acoustic scatterers9-12. To fulfil their potential in device applications, mechanical topological systems need to be scaled to the on-chip level for high-frequency transport13-15. Here we report the experimental realization of topological nanoelectromechanical metamaterials, consisting of two-dimensional arrays of free-standing silicon nitride nanomembranes that operate at high frequencies (10-20 megahertz). We experimentally demonstrate the presence of edge states, and characterize their localization and Dirac-cone-like frequency dispersion. Our topological waveguides are also robust to waveguide distortions and pseudospin-dependent transport. The on-chip integrated acoustic components realized here could be used in unidirectional waveguides and compact delay lines for high-frequency signal-processing applications.

6.
Nat Nanotechnol ; 13(11): 1016-1020, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30201989

RESUMO

Nanoelectromechanical systems (NEMS) that operate in the megahertz (MHz) regime allow energy transducibility between different physical domains. For example, they convert optical or electrical signals into mechanical motions and vice versa1. This coupling of different physical quantities leads to frequency-tunable NEMS resonators via electromechanical non-linearities2-4. NEMS platforms with single- or low-degrees of freedom have been employed to demonstrate quantum-like effects, such as mode cooling5, mechanically induced transparency5, Rabi oscillation6,7, two-mode squeezing8 and phonon lasing9. Periodic arrays of NEMS resonators with architected unit cells enable fundamental studies of lattice-based solid-state phenomena, such as bandgaps10,11, energy transport10-12, non-linear dynamics and localization13,14, and topological properties15, directly transferrable to on-chip devices. Here we describe one-dimensional, non-linear, nanoelectromechanical lattices (NEML) with active control of the frequency band dispersion in the radio-frequency domain (10-30 MHz). The design of our systems is inspired by NEMS-based phonon waveguides10,11 and includes the voltage-induced frequency tuning of the individual resonators2-4. Our NEMLs consist of a periodic arrangement of mechanically coupled, free-standing nanomembranes with circular clamped boundaries. This design forms a flexural phononic crystal with a well-defined bandgap, 1.8 MHz wide. The application of a d.c. gate voltage creates voltage-dependent on-site potentials, which can significantly shift the frequency bands of the device. Additionally, a dynamic modulation of the voltage triggers non-linear effects, which induce the formation of a phononic bandgap in the acoustic branch, analogous to Peierls transition in condensed matter16. The gating approach employed here makes the devices more compact than recently proposed systems, whose tunability mostly relies on materials' compliance17,18 and mechanical non-linearities19-22.

7.
Proc Natl Acad Sci U S A ; 114(46): 12150-12155, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087329

RESUMO

Dense colloidal suspensions can propagate and absorb large mechanical stresses, including impacts and shocks. The wave transport stems from the delicate interplay between the spatial arrangement of the structural units and solvent-mediated effects. For dynamic microscopic systems, elastic deformations of the colloids are usually disregarded due to the damping imposed by the surrounding fluid. Here, we study the propagation of localized mechanical pulses in aqueous monolayers of micron-sized particles of controlled microstructure. We generate extreme localized deformation rates by exciting a target particle via pulsed-laser ablation. In crystalline monolayers, stress propagation fronts take place, where fast-moving particles (V approximately a few meters per second) are aligned along the symmetry axes of the lattice. Conversely, more viscous solvents and disordered structures lead to faster and isotropic energy absorption. Our results demonstrate the accessibility of a regime where elastic collisions also become relevant for suspensions of microscopic particles, behaving as "billiard balls" in a liquid, in analogy with regular packings of macroscopic spheres. We furthermore quantify the scattering of an impact as a function of the local structural disorder.

8.
J Chem Theory Comput ; 12(7): 3214-27, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27244103

RESUMO

In this work, methods for the efficient simulation of large systems embedded in a molecular environment are presented. These methods combine linear-scaling (LS) Kohn-Sham (KS) density functional theory (DFT) with subsystem (SS) DFT. LS DFT is efficient for large subsystems, while SS DFT is linear scaling with a smaller prefactor for large sets of small molecules. The combination of SS and LS, which is an embedding approach, can result in a 10-fold speedup over a pure LS simulation for large systems in aqueous solution. In addition to a ground-state Born-Oppenheimer SS+LS implementation, a time-dependent density functional theory-based Ehrenfest molecular dynamics (EMD) using density matrix propagation is presented that allows for performing nonadiabatic dynamics. Density matrix-based EMD in the SS framework is naturally linear scaling and appears suitable to study the electronic dynamics of molecules in solution. In the LS framework, linear scaling results as long as the density matrix remains sparse during time propagation. However, we generally find a less than exponential decay of the density matrix after a sufficiently long EMD run, preventing LS EMD simulations with arbitrary accuracy. The methods are tested on various systems, including spectroscopy on dyes, the electronic structure of TiO2 nanoparticles, electronic transport in carbon nanotubes, and the satellite tobacco mosaic virus in explicit solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...