Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 122(3): 457-472, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29279301

RESUMO

RATIONALE: Inositol polyphosphate multikinase (IPMK) and its major product inositol pentakisphosphate (IP5) regulate a variety of cellular functions, but their role in vascular biology remains unexplored. OBJECTIVE: We have investigated the role of IPMK in regulating angiogenesis. METHODS AND RESULTS: Deletion of IPMK in fibroblasts induces angiogenesis in both in vitro and in vivo models. IPMK deletion elicits a substantial increase of VEGF (vascular endothelial growth factor), which mediates the regulation of angiogenesis by IPMK. The regulation of VEGF by IPMK requires its catalytic activity. IPMK is predominantly nuclear and regulates gene transcription. However, IPMK does not apparently serve as a transcription factor for VEGF. HIF (hypoxia-inducible factor)-1α is a major determinant of angiogenesis and induces VEGF transcription. IPMK deletion elicits a major enrichment of HIF-1α protein and thus VEGF. HIF-1α is constitutively ubiquitinated by pVHL (von Hippel-Lindau protein) followed by proteasomal degradation under normal conditions. However, HIF-1α is not recognized and ubiquitinated by pVHL in IPMK KO (knockout) cells. IP5 reinstates the interaction of HIF-1α and pVHL. HIF-1α prolyl hydroxylation, which is prerequisite for pVHL recognition, is interrupted in IPMK-deleted cells. IP5 promotes HIF-1α prolyl hydroxylation and thus pVHL-dependent degradation of HIF-1α. Deletion of IPMK in mouse brain increases HIF-1α/VEGF levels and vascularization. The increased VEGF in IPMK KO disrupts blood-brain barrier and enhances brain blood vessel permeability. CONCLUSIONS: IPMK, via its product IP5, negatively regulates angiogenesis by inhibiting VEGF expression. IP5 acts by enhancing HIF-1α hydroxylation and thus pVHL-dependent degradation of HIF-1α.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fosfatos de Inositol/metabolismo , Neovascularização Fisiológica/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/fisiologia , Animais , Barreira Hematoencefálica , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteólise , RNA Interferente Pequeno/genética , Organismos Livres de Patógenos Específicos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
2.
Sci Rep ; 6: 28648, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27345868

RESUMO

Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein ß (C/EBPß) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223-276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis.


Assuntos
Adipócitos/metabolismo , Adipogenia , Membrana Celular/metabolismo , Glucocorticoides/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas ras/metabolismo , Células 3T3-L1 , Animais , Membrana Celular/genética , Glucocorticoides/genética , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos , Transporte Proteico , Proteínas ras/genética
3.
J Neurosci ; 35(31): 11056-67, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26245967

RESUMO

The inositol hexakisphosphate kinases (IP6Ks) are the principal enzymes that generate inositol pyrophosphates. There are three IP6Ks (IP6K1, 2, and 3). Functions of IP6K1 and IP6K2 have been substantially delineated, but little is known of IP6K3's role in normal physiology, especially in the brain. To elucidate functions of IP6K3, we generated mice with targeted deletion of IP6K3. We demonstrate that IP6K3 is highly concentrated in the brain in cerebellar Purkinje cells. IP6K3 physiologically binds to the cytoskeletal proteins adducin and spectrin, whose mutual interactions are perturbed in IP6K3-null mutants. Consequently, IP6K3 knock-out cerebella manifest abnormalities in Purkinje cell structure and synapse number, and the mutant mice display deficits in motor learning and coordination. Thus, IP6K3 is a major determinant of cytoskeletal disposition and function of cerebellar Purkinje cells. SIGNIFICANCE STATEMENT: We identified and cloned a family of three inositol hexakisphosphate kinases (IP6Ks) that generate the inositol pyrophosphates, most notably 5-diphosphoinositol pentakisphosphate (IP7). Of these, IP6K3 has been least characterized. In the present study we generated IP6K3 knock-out mice and show that IP6K3 is highly expressed in cerebellar Purkinje cells. IP6K3-deleted mice display defects of motor learning and coordination. IP6K3-null mice manifest aberrations of Purkinje cells with a diminished number of synapses. IP6K3 interacts with the cytoskeletal proteins spectrin and adducin whose altered disposition in IP6K3 knock-out mice may mediate phenotypic features of the mutant mice. These findings afford molecular/cytoskeletal mechanisms by which the inositol polyphosphate system impacts brain function.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Células de Purkinje/metabolismo , Espectrina/metabolismo , Sinapses/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Forma Celular/fisiologia , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Células de Purkinje/citologia
4.
Proc Natl Acad Sci U S A ; 112(6): 1773-8, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25617365

RESUMO

The inositol pyrophosphates, molecular messengers containing an energetic pyrophosphate bond, impact a wide range of biologic processes. They are generated primarily by a family of three inositol hexakisphosphate kinases (IP6Ks), the principal product of which is diphosphoinositol pentakisphosphate (IP7). We report that IP6K2, via IP7 synthesis, is a major mediator of cancer cell migration and tumor metastasis in cell culture and in intact mice. IP6K2 acts by enhancing cell-matrix adhesion and decreasing cell-cell adhesion. This action is mediated by IP7-elicited nuclear sequestration and inactivation of the tumor suppressor liver kinase B1 (LKB1). Accordingly, inhibitors of IP6K2 offer promise in cancer therapy.


Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fosfatos de Inositol/metabolismo , Metástase Neoplásica/fisiopatologia , Fosfotransferases (Aceptor do Grupo Fosfato)/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP , Animais , Western Blotting , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Humanos , Imunoprecipitação , Fosfatos de Inositol/biossíntese , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(45): 16005-10, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25349427

RESUMO

Inositol polyphosphates containing an energetic pyrophosphate bond are formed primarily by a family of three inositol hexakisphosphate (IP6) kinases (IP6K1-3). The Cullin-RING ubiquitin ligases (CRLs) regulate diverse biological processes through substrate ubiquitylation. CRL4, comprising the scaffold Cullin 4A/B, the E2-interacting Roc1/2, and the adaptor protein damage-specific DNA-binding protein 1, is activated by DNA damage. Basal CRL4 activity is inhibited by binding to the COP9 signalosome (CSN). UV radiation and other stressors dissociate the complex, leading to E3 ligase activation, but signaling events that trigger signalosome dissociation from CRL4 have been unclear. In the present study, we show that, under basal conditions, IP6K1 forms a ternary complex with CSN and CRL4 in which IP6K1 and CRL4 are inactive. UV dissociates IP6K1 to generate IP7, which then dissociates CSN-CRL4 to activate CRL4. Thus, IP6K1 is a novel CRL4 subunit that transduces UV signals to mediate disassembly of the CRL4-CSN complex, thereby regulating nucleotide excision repair and cell death.


Assuntos
Proteínas Culina/metabolismo , Reparo do DNA/efeitos da radiação , Complexos Multiproteicos/metabolismo , Peptídeo Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Complexo do Signalossomo COP9 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos da radiação , Proteínas Culina/genética , Células HEK293 , Humanos , Camundongos , Complexos Multiproteicos/genética , Peptídeo Hidrolases/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Transdução de Sinais/efeitos da radiação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Nature ; 509(7498): 96-100, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24670645

RESUMO

Huntington's disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes. Huntington's disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington's disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine γ-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington's disease tissues, which may mediate Huntington's disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington's disease tissues and in intact mouse models of Huntington's disease, suggesting therapeutic potential.


Assuntos
Cistationina gama-Liase/deficiência , Doença de Huntington/enzimologia , Doença de Huntington/patologia , Animais , Encéfalo/enzimologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Cistationina gama-Liase/genética , Cisteína/administração & dosagem , Cisteína/biossíntese , Cisteína/farmacologia , Cisteína/uso terapêutico , Suplementos Nutricionais , Modelos Animais de Doenças , Água Potável/química , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/genética , Proteína Huntingtina , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Masculino , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica/genética
7.
Proc Natl Acad Sci U S A ; 110(51): 20575-80, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297897

RESUMO

Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1-deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dexametasona/efeitos adversos , Glucocorticoides/efeitos adversos , Obesidade/induzido quimicamente , Proteínas ras/metabolismo , Células 3T3-L1 , Adipogenia/genética , Animais , Dexametasona/farmacologia , Dieta/efeitos adversos , Glucocorticoides/farmacologia , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proteínas ras/genética
8.
Proc Natl Acad Sci U S A ; 110(49): 19938-43, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248338

RESUMO

Inositol polyphosphate multikinase (IPMK) is a notably pleiotropic protein. It displays both inositol phosphate kinase and phosphatidylinositol kinase catalytic activities. Noncatalytically, IPMK stabilizes the mammalian target of rapamycin complex 1 and acts as a transcriptional coactivator for CREB-binding protein/E1A binding protein p300 and tumor suppressor protein p53. Serum response factor (SRF) is a major transcription factor for a wide range of immediate early genes. We report that IPMK, in a noncatalytic role, is a transcriptional coactivator for SRF mediating the transcription of immediate early genes. Stimulation by serum of many immediate early genes is greatly reduced by IPMK deletion. IPMK stimulates expression of these genes, an influence also displayed by catalytically inactive IPMK. IPMK acts by binding directly to SRF and thereby enhancing interactions of SRF with the serum response element of diverse genes.


Assuntos
Genes Precoces/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia , Animais , Imunoprecipitação da Cromatina , Primers do DNA/genética , Proteína p300 Associada a E1A/metabolismo , Genes Precoces/genética , Processamento de Imagem Assistida por Computador , Immunoblotting , Camundongos , Camundongos Knockout , Análise em Microsséries , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo
9.
J Biol Chem ; 284(10): 6227-40, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19103595

RESUMO

Alternative splice variants of fibroblast growth factor receptor 2 (FGFR2) IIIb, designated C1, C2, and C3, possess progressive reduction in their cytoplasmic carboxyl termini (822, 788, and 769 residues, respectively), with preferential expression of the C2 and C3 isoforms in human cancers. We determined that the progressive deletion of carboxyl-terminal sequences correlated with increasing transforming potency. The highly transforming C3 variant lacks five tyrosine residues present in C1, and we determined that the loss of Tyr-770 alone enhanced FGFR2 IIIb C1 transforming activity. Because Tyr-770 may compose a putative YXXL sorting motif, we hypothesized that loss of Tyr-770 in the 770YXXL motif may cause disruption of FGFR2 IIIb C1 internalization and enhance transforming activity. Surprisingly, we found that mutation of Leu-773 but not Tyr-770 impaired receptor internalization and increased receptor stability and activation. Interestingly, concurrent mutations of Tyr-770 and Leu-773 caused 2-fold higher transforming activity than caused by the Y770F or L773A single mutations, suggesting loss of Tyr and Leu residues of the 770YXXL773 motif enhances FGFR2 IIIb transforming activity by distinct mechanisms. We also determined that loss of Tyr-770 caused persistent activation of FRS2 by enhancing FRS2 binding to FGFR2 IIIb. Furthermore, we found that FRS2 binding to FGFR2 IIIb is required for increased FRS2 tyrosine phosphorylation and enhanced transforming activity by Y770F mutation. Our data support a dual mechanism where deletion of the 770YXXL773 motif promotes FGFR2 IIIb C3 transforming activity by causing aberrant receptor recycling and stability and persistent FRS2-dependent signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteínas de Membrana/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo/genética , Motivos de Aminoácidos/genética , Substituição de Aminoácidos , Animais , Linhagem Celular , Transformação Celular Neoplásica/genética , Ativação Enzimática/genética , Estabilidade Enzimática/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Membrana/genética , Mutação , Fosforilação/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Transporte Proteico/genética , Ratos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
10.
Mol Cancer Res ; 6(3): 435-45, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18337450

RESUMO

We identified the IIIb C2 epithelial cell-specific splice variant of fibroblast growth factor receptor 2 (FGFR2 IIIb C2) receptor tyrosine kinase in a screen for activated oncogenes expressed in T-47D human breast carcinoma cells. We found FGFR2 IIIb C2 expression in breast carcinoma cell lines and, additionally, expression of the mesenchymal-specific FGFR2 IIIc splice variant in invasive breast carcinomas. FGFR2 IIIc expression was associated with loss of epithelial markers and gain of mesenchymal markers. Although FGFR2 IIIb is expressed in epithelial cells, previous studies on FGFR2 IIIb transformation have focused on NIH 3T3 fibroblasts. Therefore, we compared the transforming activities of FGFR2 IIIb C2 in RIE-1 intestinal cells and several mammary epithelial cells. FGFR2 IIIb C2 caused growth transformation of epithelial cells but morphologic transformation of only NIH 3T3 cells. FGFR2 IIIb C2-transformed NIH 3T3, but not RIE-1 cells, showed persistent activation of Ras and increased cyclin D1 protein expression. NIH 3T3 but not RIE-1 cells express keratinocyte growth factor, a ligand for FGFR2 IIIb C2. Ectopic treatment with keratinocyte growth factor caused FGFR2 IIIb C2-dependent morphologic transformation of RIE-1 cells, as well as cyclin D1 up-regulation, indicating that both ligand-independent and stromal cell-derived, ligand-dependent mechanisms contribute to RIE-1 cell transformation. Our results support cell context distinct mechanisms of FGFR2 IIIb C2 transformation.


Assuntos
Processamento Alternativo , Neoplasias da Mama/fisiopatologia , Variação Genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Sequência de Aminoácidos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma/genética , Carcinoma/patologia , Carcinoma/fisiopatologia , Divisão Celular , Linhagem Celular Tumoral , Feminino , Humanos , Dados de Sequência Molecular , Conformação Proteica , Isoformas de Proteínas/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química
11.
Eukaryot Cell ; 5(2): 330-46, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16467474

RESUMO

A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.


Assuntos
Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Genoma Fúngico/genética , Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Proteínas Ativadoras de GTPase/química , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genômica , Fator de Acasalamento , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Feromônios/metabolismo , Plasmídeos/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas RGS/química , Proteínas RGS/metabolismo , Proteínas de Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...