Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 11(1)2020 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379296

RESUMO

Dietary supplement and personal care products aiming to provide protection from air pollution have been of great interest for decades. Epidemiology demonstrated that PM10 and PM2.5 particulate matter (PM) are an actual threat to public health worldwide, but the detailed processes of how these particles attack the cells are not fully understood. Here, we report that the measurement of intracellular calcium concentration ([Ca2+]i) using human respiratory or skin cells can illustrate pollutant challenges by triggering Ca2+ influx in these cells. This signal was generated by proteinase-activated receptor-2 (PAR-2), confirmed by competition analyses, and Phellodendron amurense bark extract (PAE), a traditional medicine, was able to control the response and expression of PAR-2. Increase in proinflammatory cytokines and decrease in cell adhesion components could suggest a severe damage status by air pollutants and protection by PAE. Finally, we identified 4-O-feruloylquinic acid (FQA), an active compound of PAE, showing the same effects on Ca2+ influx and PAR-2 regulation. The results presented here should help understand the underlying mechanism of PM insults and the beneficial effect of standardized PAE as dietary supplement or cosmetical ingredient.


Assuntos
Inflamação/tratamento farmacológico , Queratinócitos/efeitos dos fármacos , Phellodendron/química , Receptor PAR-2/genética , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indanos/toxicidade , Inflamação/induzido quimicamente , Inflamação/patologia , Queratinócitos/patologia , Material Particulado/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Environ Microbiol ; 22(1): 76-90, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599077

RESUMO

Clearance and adaptation to reactive oxygen species (ROS) are crucial for cell survival. As in other eukaryotes, the Neurospora catalases are the main enzymes responsible for ROS clearance and their expression are tightly regulated by the growth and environmental conditions. The RNA polymerase II carboxyl terminal domain (RNAPII CTD) kinase complex (CTK complex) is known as a positive elongation factor for many inducible genes by releasing paused RNAPII near the transcription start site and promoting transcription elongation. However, here we show that deletion of CTK complex components in Neurospora led to high CAT-3 expression level and resistance to H2 O2 -induced ROS stress. The catalytic activity of CTK-1 is required for such a response. On the other hand, CTK-1 overexpression led to decreased expression of CAT-3. ChIP assays shows that CTK-1 phosphorylates the RNAPII CTD at Ser2 residues in the cat-3 ORF region during transcription elongation and deletion of CTK-1 led to dramatic decreases of SET-2 recruitment and H3K36me3 modification. As a result, histones at the cat-3 locus become hyperacetylated to promote its transcription. Together, these results demonstrate that the CTK complex is negative regulator of cat-3 expression by affecting its chromatin structure.


Assuntos
Catalase/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Neurospora/enzimologia , Neurospora/genética , Fosfotransferases/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Fosforilação , Sítio de Iniciação de Transcrição
3.
J Biol Chem ; 291(21): 11055-63, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27002152

RESUMO

The circadian system in Neurospora is based on the transcriptional/translational feedback loops and rhythmic frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Our previous paper has shown that frq could be transcribed in a WC-independent pathway in a strain lacking the histone H3K36 methyltransferase, SET-2 (su(var)3-9-enhancer-of-zeste-trithorax-2) (1), but the mechanism was unclear. Here we disclose that loss of histone H3K36 methylation, due to either deletion of SET-2 or H3K36R mutation, results in arrhythmic frq transcription and loss of overt rhythmicity. Histone acetylation at frq locus increases in set-2(KO) mutant. Consistent with these results, loss of H3K36 methylation readers, histone deacetylase RPD-3 (reduced potassium dependence 3) or EAF-3 (essential SAS-related acetyltransferase-associated factor 3), also leads to hyperacetylation of histone at frq locus and WC-independent frq expression, suggesting that proper chromatin modification at frq locus is required for circadian clock operation. Furthermore, a mutant strain with three amino acid substitutions (histone H3 lysine 9, 14, and 18 to glutamine) was generated to mimic the strain with hyperacetylation state of histone H3. H3K9QK14QK18Q mutant exhibits the same defective clock phenotype as rpd-3(KO) mutant. Our results support a scenario in which H3K36 methylation is required to establish a permissive chromatin state for circadian frq transcription by maintaining proper acetylation status at frq locus.


Assuntos
Relógios Circadianos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Genes Fúngicos , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histona-Lisina N-Metiltransferase/deficiência , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Mol Cell Biol ; 35(12): 2088-102, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25848091

RESUMO

Rhythmic activation and repression of clock gene expression is essential for the eukaryotic circadian clock functions. In the Neurospora circadian oscillator, the transcription of the frequency (frq) gene is periodically activated by the White Collar (WC) complex and suppressed by the FRQ-FRH complex. We previously showed that there is WC-independent frq transcription and its repression is required for circadian gene expression. How WC-independent frq transcription is regulated is not known. We show here that elevated protein kinase A (PKA) activity results in WC-independent frq transcription and the loss of clock function. We identified RCM-1 as the protein partner of RCO-1 and an essential component of the clock through its role in suppressing WC-independent frq transcription. RCM-1 is a phosphoprotein and is a substrate of PKA in vivo and in vitro. Mutation of the PKA-dependent phosphorylation sites on RCM-1 results in WC-independent transcription of frq and impaired clock function. Furthermore, we showed that RCM-1 is associated with the chromatin at the frq locus, a process that is inhibited by PKA. Together, our results demonstrate that PKA regulates frq transcription by inhibiting RCM-1 activity through RCM-1 phosphorylation.


Assuntos
Relógios Circadianos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Neurospora crassa/genética , Fosforilação , Transcrição Gênica
5.
Methods Enzymol ; 551: 137-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25662455

RESUMO

Eukaryotic circadian clocks are comprised of interlocked autoregulatory feedback loops that control gene expression at the levels of transcription and translation. The filamentous fungus Neurospora crassa is an excellent model for the complex molecular network of regulatory mechanisms that are common to all eukaryotes. At the heart of the network, posttranslational regulation and functions of the core clock elements are of major interest. This chapter discusses the methods used currently to study the regulation of clock molecules in Neurospora. The methods range from assays of gene expression to phosphorylation, nuclear localization, and DNA binding of clock proteins.


Assuntos
Relógios Circadianos , Neurospora crassa/fisiologia , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Fosforilação , Processamento de Proteína Pós-Traducional
6.
Biochemistry ; 54(2): 150-6, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25302868

RESUMO

Circadian clocks are self-sustaining timekeepers found in almost all organisms on earth. The filamentous fungus Neurospora crassa is a preeminent model for eukaryotic circadian clocks. Investigations of the Neurospora circadian clock system have led to elucidation of circadian clock regulatory mechanisms that are common to all eukaryotes. In this work, we will focus on the Neurospora circadian oscillator mechanism with an emphasis on the regulation of the core clock component FREQUENCY.


Assuntos
Relógios Circadianos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Neurospora crassa/genética , Retroalimentação Fisiológica , Proteínas Fúngicas/metabolismo , Neurospora crassa/fisiologia
7.
Proc Natl Acad Sci U S A ; 110(50): E4867-74, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277852

RESUMO

Rhythmic activation and repression of clock gene transcription is essential for the functions of eukaryotic circadian clocks. In the Neurospora circadian oscillator, frequency (frq) transcription requires the WHITE COLLAR (WC) complex. Here, we show that the transcriptional corepressor regulation of conidiation-1 (RCO-1) is essential for clock function by regulating frq transcription. In rco-1 mutants, both overt and molecular rhythms are abolished, frq mRNA levels are constantly high, and WC binding to the frq promoter is dramatically reduced. Surprisingly, frq mRNA levels were constantly high in the rco-1 wc double mutants, indicating that RCO-1 suppresses WC-independent transcription and promotes WC complex binding to the frq promoter. Furthermore, RCO-1 is required for maintaining normal chromatin structure at the frq locus. Deletion of H3K36 methyltransferase su(var)3-9-enhancer-of-zeste-trithorax-2 (SET-2) or the chromatin remodeling factor CHD-1 leads to WC-independent frq transcription and loss of overt rhythms. Together, our results uncover a previously unexpected regulatory mechanism for clock gene transcription.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica/fisiologia , Neurospora/fisiologia , Proteínas Repressoras/deficiência , Fatores de Transcrição/metabolismo , Northern Blotting , Western Blotting , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Primers do DNA/genética , Deleção de Genes , Luciferases , Complexos Multiproteicos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
8.
J Biol Chem ; 288(43): 31002-9, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24030828

RESUMO

In the Neurospora circadian negative feedback loop, white collar 1 (WC-1) and WC-2 form the WC complex that activates frequency (frq) transcription. Here we show that Not1 is a WC-interacting protein and is important for maintaining WC levels. The not1 transcript displays a circadian oscillation with a similar phase as frq. Down-regulation of not1 leads to low levels of WC-1 and WC-2 and a delayed circadian phase as a result of increased protein degradation and increased WC activity. Protein purification of Not1 shows that it is part of the Neurospora Ccr4-Not complex. ccr4 is a clock-controlled gene and is regulated directly by the WC complex. Down-regulation of ccr4 results in a phase delay and period lengthening of the clock. Together, our findings suggest that the Ccr4-Not complex participates in the Neurospora clock function by interacting with and regulating the WC complex.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Neurospora crassa/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Complexos Multiproteicos/genética , Neurospora crassa/genética , Estabilidade Proteica , Proteínas Repressoras/genética , Fatores de Transcrição/genética
9.
EMBO Rep ; 14(10): 923-30, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23958634

RESUMO

Rhythmic frq transcription is essential for the function of the Neurospora circadian clock. Here we show that there is a circadian histone occupancy rhythm at the frq promoter that is regulated by FREQUENCY (FRQ). Using a combination of forward genetics and genome sequencing, we identify Clock ATPase (CATP) as an essential clock component. Our results demonstrate that CATP associates with the frq locus and other WCC target genes and promotes histone removal at these loci to allow circadian gene transcription. These results indicate that the rhythmic control of histone occupancy at clock genes is critical for circadian clock function.


Assuntos
Adenosina Trifosfatases/metabolismo , Relógios Circadianos/genética , Proteínas Fúngicas/metabolismo , Neurospora crassa/genética , Nucleossomos/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Dados de Sequência Molecular , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Regiões Promotoras Genéticas
10.
Nature ; 495(7439): 111-5, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23417067

RESUMO

Codon-usage bias has been observed in almost all genomes and is thought to result from selection for efficient and accurate translation of highly expressed genes. Codon usage is also implicated in the control of transcription, splicing and RNA structure. Many genes exhibit little codon-usage bias, which is thought to reflect a lack of selection for messenger RNA translation. Alternatively, however, non-optimal codon usage may be of biological importance. The rhythmic expression and the proper function of the Neurospora FREQUENCY (FRQ) protein are essential for circadian clock function. Here we show that, unlike most genes in Neurospora, frq exhibits non-optimal codon usage across its entire open reading frame. Optimization of frq codon usage abolishes both overt and molecular circadian rhythms. Codon optimization not only increases FRQ levels but, unexpectedly, also results in conformational changes in FRQ protein, altered FRQ phosphorylation profile and stability, and impaired functions in the circadian feedback loops. These results indicate that non-optimal codon usage of frq is essential for its circadian clock function. Our study provides an example of how non-optimal codon usage functions to regulate protein expression and to achieve optimal protein structure and function.


Assuntos
Proteínas CLOCK/genética , Códon/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Neurospora crassa , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Retroalimentação Fisiológica , Proteínas Fúngicas/genética , Neurospora crassa/química , Neurospora crassa/genética , Neurospora crassa/metabolismo , Fases de Leitura Aberta , Fosforilação , Conformação Proteica , Estabilidade Proteica , Tripsina/metabolismo
11.
J Biol Chem ; 286(13): 11469-78, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21300798

RESUMO

Eukaryotic circadian clocks employ autoregulatory negative feedback loops to control daily rhythms. In the filamentous fungus Neurospora, FRQ, FRH, WC-1, and WC-2 are the core components of the circadian negative feedback loop. To close the transcription-based negative feedback loop, the FRQ-FRH complex inhibits the activity of the WC complex in the nucleus by promoting the casein kinases-mediated WC phosphorylation. Despite its essential role in the nucleus, most FRQ is found in the cytoplasm. In this study, we mapped the FRQ regions that are important for its cellular localization. We show that the C-terminal part of FRQ, particularly the FRQ-FRH interaction domain, plays a major role in controlling FRQ localization. Both the mutation of the FRQ-FRH interaction domain and the down-regulation of FRH result in the nuclear enrichment of FRQ, suggesting that FRH regulates FRQ localization via a physical interaction. To study the role of FRQ phosphorylation, we examined the FRQ localization in wild-type as well as an array of FRQ kinase, FRQ phosphatase, and FRQ phosphorylation site mutants. Collectively, our results suggest that FRQ phosphorylation does not play a significant role in regulating its cellular localization. Instead, we find that phosphorylation of FRQ inhibits its transcriptional repressor activity in the circadian negative feedback loop. Such an effect is achieved by inhibiting the ability of FRQ to interact with WCC and casein kinase 1a. Our results indicate that the rhythmic FRQ phosphorylation profile observed is an important part of the negative feedback mechanism that drives robust circadian gene expression.


Assuntos
Núcleo Celular/metabolismo , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Neurospora crassa/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Núcleo Celular/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Proteínas Fúngicas/genética , Neurospora crassa/citologia , Neurospora crassa/genética , Fosforilação/fisiologia , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
PLoS Biol ; 8(10)2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20957187

RESUMO

The production of aberrant RNA (aRNA) is the initial step in several RNAi pathways. How aRNA is produced and specifically recognized by RNA-dependent RNA polymerases (RdRPs) to generate double-stranded RNA (dsRNA) is not clear. We previously showed that in the filamentous fungus Neurospora, the RdRP QDE-1 is required for rDNA-specific aRNA production, suggesting that QDE-1 may be important in aRNA synthesis. Here we show that a recombinant QDE-1 is both an RdRP and a DNA-dependent RNA polymerase (DdRP). Its DdRP activity is much more robust than the RdRP activity and occurs on ssDNA but not dsDNA templates. We further show that Replication Protein A (RPA), a single-stranded DNA-binding complex that interacts with QDE-1, is essential for aRNA production and gene silencing. In vitro reconstitution assays demonstrate that QDE-1 can produce dsRNA from ssDNA, a process that is strongly promoted by RPA. Furthermore, the interaction between QDE-1 and RPA requires the RecQ DNA helicase QDE-3, a homolog of the human Werner/Bloom Syndrome proteins. Together, these results suggest a novel small RNA biogenesis pathway in Neurospora and a new mechanism for the production of aRNA and dsRNA in RNAi pathways.


Assuntos
DNA Helicases/metabolismo , Proteínas Fúngicas/metabolismo , Interferência de RNA , RNA de Cadeia Dupla , RNA Polimerase Dependente de RNA/metabolismo , RNA , Proteína de Replicação A/metabolismo , Animais , DNA Helicases/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Neurospora crassa/genética , Neurospora crassa/metabolismo , RNA/genética , RNA/metabolismo , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Polimerase Dependente de RNA/genética , Proteína de Replicação A/genética , Ribonucleases/genética , Ribonucleases/metabolismo
13.
Methods Mol Biol ; 638: 189-200, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20238270

RESUMO

Biochemical approaches are powerful tools for investigating mechanisms of biological processes. Here, we describe several biochemical approaches that have been successfully in our laboratory to study the filamentous fungus Neurospora crassa. These approaches include protein extraction and western blot analysis, protein purification using epitope-tagged fusion protein, protein immunoprecipitation (IP) and Chromatin Immunoprecipitation (ChIP) assays. These methods can also be modified for use in other filamentous fungi.


Assuntos
Western Blotting/métodos , Imunoprecipitação da Cromatina/métodos , Proteínas Fúngicas/metabolismo , Expressão Gênica , Imunoprecipitação/métodos , Neurospora crassa/genética , Neurospora crassa/metabolismo , Regulação Fúngica da Expressão Gênica , Neurospora crassa/crescimento & desenvolvimento , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
14.
Proc Natl Acad Sci U S A ; 106(26): 10722-7, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19506251

RESUMO

Protein phosphorylation plays essential roles in eukaryotic circadian clocks. Like PERIOD in animals, the Neurospora core circadian protein FRQ is progressively phosphorylated and becomes extensively phosphorylated before its degradation. In this study, by using purified FRQ protein from Neurospora, we identified 43 in vivo FRQ phosphorylation sites by mass spectrometry analysis. In addition, we show that CK-1a and CKII are responsible for most FRQ phosphorylation events and identify an additional 33 phosphorylation sites by in vitro kinase assays. Whole-cell metabolic isotope labeling and quantitative MS analyses suggest that circadian oscillation of the FRQ phosphorylation profile is primarily due to progressive phosphorylation at the majority of these newly discovered phosphorylation sites. Furthermore, systematic mutations of the identified FRQ phosphorylation sites led to either long or short period phenotypes. These changes in circadian period are attributed to increases or decreases in FRQ stability, respectively. Together, this comprehensive study of FRQ phosphorylation reveals that regulation of FRQ stability by multiple independent phosphorylation events is a major factor that determines the period length of the clock. A model is proposed to explain how FRQ stability is regulated by multiple phosphorylation events.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas Fúngicas/metabolismo , Neurospora/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Ritmo Circadiano/genética , Cicloeximida/farmacologia , Proteínas Fúngicas/genética , Espectrometria de Massas/métodos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Micélio/efeitos dos fármacos , Micélio/genética , Micélio/metabolismo , Neurospora/efeitos dos fármacos , Neurospora/genética , Fosforilação , Estabilidade Proteica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia
15.
EMBO J ; 27(24): 3246-55, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19020516

RESUMO

Reversible protein phosphorylation has critical functions in the eukaryotic circadian negative feedback loops. In Neurospora, the FREQUENCY protein closes the circadian negative feedback loop by promoting the phosphorylation of its transcription activator, the WHITE COLLAR complex (WCC) and consequently inhibiting WCC activity. Here we show that protein phosphatase 4 is a novel component of the Neurospora clock by regulating both processes of the circadian negative feedback loop. The disruption of pp4 results in short period rhythms with low amplitude. In addition to its role in regulating FRQ phosphorylation and stability, PP4 also dephosphorylates and activates WCC. In contrast to PP2A, another phosphatase that activates WCC, PP4 has a major function in promoting nuclear entry of WCC. PKA, a WC kinase, inhibits WC nuclear localization. Furthermore, the FRQ-dependent WC phosphorylation promotes WCC cytosolic localization. Together, these results revealed WCC nucleocytoplasmic shuttling as an important step in the circadian negative feedback process and delineated the FRQ-dependent WCC inhibition as a two-step process: the inhibition of WCC DNA-binding activity followed by sequestration of WCC into the cytoplasm.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Celular/química , Citoplasma , Deleção de Genes , Neurospora crassa/genética , Fosfoproteínas Fosfatases/genética , Fosforilação
16.
Genes Dev ; 21(24): 3283-95, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18079175

RESUMO

Regulation of circadian clock components by phosphorylation plays essential roles in clock functions and is conserved from fungi to mammals. In the Neurospora circadian negative feedback loop, FREQUENCY (FRQ) protein inhibits WHITE COLLAR (WC) complex activity by recruiting the casein kinases CKI and CKII to phosphorylate the WC proteins, resulting in the repression of frq transcription. On the other hand, CKI and CKII progressively phosphorylate FRQ to promote FRQ degradation, a process that is a major determinant of circadian period length. Here, by using whole-cell isotope labeling and quantitative mass spectrometry methods, we show that the WC-1 phosphorylation events critical for the negative feedback process occur sequentially-first by a priming kinase, then by the FRQ-recruited casein kinases. We further show that the cyclic AMP-dependent protein kinase A (PKA) is essential for clock function and inhibits WC activity by serving as a priming kinase for the casein kinases. In addition, PKA also regulates FRQ phosphorylation, but unlike CKI and CKII, PKA stabilizes FRQ, similar to the stabilization of human PERIOD2 (hPER2) due to the phosphorylation at the familial advanced sleep phase syndrome (FASPS) site. Thus, PKA is a key clock component that regulates several critical processes in the circadian negative feedback loop.


Assuntos
Caseína Quinases/metabolismo , Ritmo Circadiano , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurospora/metabolismo , Sequência de Aminoácidos , Caseína Quinases/química , DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Dados de Sequência Molecular , Neurospora/enzimologia , Fosforilação , Espectrometria de Massas por Ionização por Electrospray , Transcrição Gênica
17.
Eukaryot Cell ; 5(11): 1857-65, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16950927

RESUMO

In the fission yeast Schizosaccharomyces pombe, the pgr1+ gene encoding glutathione (GSH) reductase (GR) is essentially required for cell survival. Depletion of GR caused proliferation arrest at the G1 phase of the cell cycle under aerobic conditions. Multicopy suppressors that restore growth were screened, and one effective suppressor was found to be the trx2+ gene, encoding a mitochondrial thioredoxin. This suggests that GR is critically required for some mitochondrial function(s). We found that GR resides in both cytosolic and organellar fractions of the cell. Depletion of GR lowered the respiration rate and the activity of oxidation-labile Fe-S enzymes such as mitochondrial aconitase and cytosolic sulfite reductase. Trx2 did not reverse the high ratio of oxidized glutathione to GSH or the low respiration rate observed in GR-depleted cells. However, it brought the activity of oxidation-labile Fe-S enzymes to a normal level, suggesting that the maintenance of Fe-S enzymes is a critical factor in the survival of S. pombe. The activity of succinate dehydrogenase, an oxidation-insensitive Fe-S enzyme, however, was not affected by GR depletion, suggesting that GR is not required for the biogenesis of the Fe-S cluster. The total iron content was greatly increased by GR depletion and was brought to a nearly normal level by Trx2. These results indicate that the essentiality of GR in the aerobic growth of S. pombe is derived from its role in maintaining oxidation-labile Fe-S enzymes and iron homeostasis.


Assuntos
Glutationa Redutase/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Schizosaccharomyces/fisiologia , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Respiração Celular/fisiologia , Códon de Iniciação , Glutationa/metabolismo , Glutationa Redutase/genética , Homeostase , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Oxirredução , Ratos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe , Alinhamento de Sequência , Tiorredoxinas/genética
18.
Genes Dev ; 20(18): 2552-65, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16980584

RESUMO

The eukaryotic circadian oscillators consist of circadian negative feedback loops. In Neurospora, it was proposed that the FREQUENCY (FRQ) protein promotes the phosphorylation of the WHITE COLLAR (WC) complex, thus inhibiting its activity. The kinase(s) involved in this process is not known. In this study, we show that the disruption of the interaction between FRQ and CK-1a (a casein kinase I homolog) results in the hypophosphorylation of FRQ, WC-1, and WC-2. In the ck-1a(L) strain, a knock-in mutant that carries a mutation equivalent to that of the Drosophila dbt(L) mutation, FRQ, WC-1, and WC-2 are hypophosphorylated. The mutant also exhibits ~32 h circadian rhythms due to the increase of FRQ stability and the significant delay of FRQ progressive phosphorylation. In addition, the levels of WC-1 and WC-2 are low in the ck-1a(L) strain, indicating that CK-1a is also important for the circadian positive feedback loops. In spite of its low accumulation in the ck-1a(L) strain, the hypophosphorylated WCC efficiently binds to the C-box within the frq promoter, presumably because it cannot be inactivated through FRQ-mediated phosphorylation. Furthermore, WC-1 and WC-2 are also hypophosphorylated in the cka(RIP) strain, which carries the disruption of the catalytic subunit of casein kinase II. In the cka(RIP) strain, WCC binding to the C-box is constantly high and cannot be inhibited by FRQ despite high FRQ levels, resulting in high levels of frq RNA. Together, these results suggest that CKI and CKII, in addition to being the FRQ kinases, mediate the FRQ-dependent phosphorylation of WCs, which inhibit their activity and close the circadian negative feedback loop.


Assuntos
Caseína Quinase II/metabolismo , Caseína Quinase I/metabolismo , Ritmo Circadiano/fisiologia , Proteínas Fúngicas/metabolismo , Neurospora/metabolismo , Sequência de Aminoácidos , Animais , Caseína Quinase I/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação , Proteínas Fúngicas/genética , Genes Fúngicos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Neurospora/genética , Fosforilação , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
19.
Mol Microbiol ; 59(6): 1848-58, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16553888

RESUMO

Nickel serves as a cofactor for various microbial enzymes including superoxide dismutase (SOD) found in Streptomyces spp. In Streptomyces coelicolor, nickel represses and induces production of Fe-containing and Ni-containing SODs, respectively, primarily at the transcriptional level. We identified the nickel-responsive regulator (Nur), a Fur (ferric-uptake regulator) homologue, which binds to the promoter region of the sodF gene encoding FeSOD in the presence of nickel. Disruption of the nur gene caused constitutive expression of FeSOD and no induction of NiSOD in the presence of nickel. The intracellular level of nickel was higher in a Deltanur mutant than in the wild type, suggesting that Nur also regulates nickel uptake in S. coelicolor. A putative nickel-transporter gene cluster (nikABCDE) was identified in the genome database. Its transcription was negatively regulated by Nur in the presence of nickel. Purified Nur protein bound to the nikA promoter region in a nickel-dependent way. These results support the action of Nur as a regulator of nickel homeostasis and antioxidative response in S. coelicolor, and add a novel nickel-responsive member to the list of versatile metal-specific regulators of the Fur family.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Regulação Bacteriana da Expressão Gênica , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Streptomyces coelicolor/metabolismo , Superóxido Dismutase/genética , Sequência de Aminoácidos , Transporte Biológico/genética , Deleção de Genes , Genoma Bacteriano , Dados de Sequência Molecular , Família Multigênica , Óperon/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/isolamento & purificação , Streptomyces coelicolor/genética
20.
Biochem Biophys Res Commun ; 297(4): 854-62, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12359231

RESUMO

Regulation and the role of the sod1+ gene encoding CuZnSOD were investigated in fission yeast Schizosaccharomyces pombe. The amount of sod1+ mRNA decreased in the stationary phase, consistent with the decrease in enzyme activity. The transcript increased by treatment with oxidants such as H(2)O(2) and menadione (MD). Induction by H(2)O(2) was rapid and transient, being dependent on Wis1-Spc1-Atf1 pathway of signal transduction, whereas induction by MD was slow and sustained longer, being independent of Wis1 pathway. Wis1 and Spc1 also turned out to down-regulate sod1+ gene at the stationary phase. Tetrad analysis following sod1+ gene disruption revealed that the sod1Delta cells were not viable, even on rich media. Repression of the sod1+ gene expression by thiamine through nmt1 promoter resulted in the arrest of cell cycle progression following S phase, possibly between G(2) and cytokinesis. The current and previous observations that the viability of Schizosaccharomyces pombe cells, unlike Saccharomyces cerevisiae, critically depends on the action of oxidative defense enzymes in the cytosol, such as CuZnSOD and glutathione reductase, suggest that S. pombe can serve as a good model system to study the effect of oxidative stress on cell proliferation.


Assuntos
Ciclo Celular/fisiologia , Schizosaccharomyces/enzimologia , Superóxido Dismutase/metabolismo , Sequência de Bases , Primers do DNA , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Cinética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Plasmídeos , Schizosaccharomyces/citologia , Schizosaccharomyces/crescimento & desenvolvimento , Superóxido Dismutase/química , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...