Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36557194

RESUMO

Engineering thermoplastics, such as poly(arylene ether sulfone), are more often synthesized using F-containing monomers rather than Cl-containing monomers because the F atom is considered more electronegative than Cl, leading to a better condensation polymerization reaction. In this study, the reaction's spontaneity improved when Cl atoms were used compared to the case using F atoms. Specifically, sulfonated poly(arylene ether sulfone) was synthesized by reacting 4,4'-dihydroxybiphenyl with two types of biphenyl sulfone monomers containing Cl and F atoms. No significant difference was observed in the structural, elemental, and chemical properties of the two copolymers based on nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction, transmission electron microscopy, and electrochemical impedance spectroscopy. However, the solution viscosity and mechanical strength of the copolymer synthesized with the Cl-terminal monomers were slightly higher than those of the copolymer synthesized with the F-terminal monomers due to higher reaction spontaneity. The first-principle study was employed to elucidate the underlying mechanisms of these reactions.

2.
Sci Rep ; 12(1): 14001, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978021

RESUMO

In this study, a sulfonated poly(ether sulfone) having cardo-type fluorenyl groups (FL-SPES) was investigated as a cathodic binder to improve fuel cell performance via increased the oxygen diffusion in the cathode. The maximum power density achieved by using the membrane electrode assembly (MEA) prepared with FL-SPES with a low ion exchange capacity (IEC) of 1.31 meq g-1 was 520 mW cm-2, which is more than twice as high as that of BP-SPES (210 mW cm-2) having typical biphenyl groups with a similar IEC. At high IEC of 1.55 meq g-1, the power density obtained by using BP-SPES was improved to 454 mW cm-2 but remained lower than that of FL-SPES. In addition, although the IEC, swelling degree, and specific resistance were similar to each other, the gas permeability of FL-SPES was improved by approximately three times compared to that of BP-SPES. The steric structure of cardo-type FL-SPES increased the free volume between the polymer backbones, leading to an increase in gas transfer. Consequently, oxygen diffusion was promoted at the cathode, resulting in improved fuel cell performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...