Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 267, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267429

RESUMO

Ultrafast photoinduced phase transitions at room temperature, driven by a single laser shot and persisting long after stimuli, represent emerging routes for ultrafast control over materials' properties. Time-resolved studies provide fundamental mechanistic insight into far-from-equilibrium electronic and structural dynamics. Here we study the photoinduced phase transformation of the Rb0.94Mn0.94Co0.06[Fe(CN)6]0.98 material, designed to exhibit a 75 K wide thermal hysteresis around room temperature between MnIIIFeII tetragonal and MnIIFeIII cubic phases. We developed a specific powder sample streaming technique to monitor by ultrafast X-ray diffraction the structural and symmetry changes. We show that the photoinduced polarons expand the lattice, while the tetragonal-to-cubic photoinduced phase transition occurs within 100 ps above threshold fluence. These results are rationalized within the framework of the Landau theory of phase transition as an elastically-driven and cooperative process. We foresee broad applications of the streaming powder technique to study non-reversible and ultrafast dynamics.

2.
Nano Lett ; 22(11): 4362-4367, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35587204

RESUMO

Herein we describe a novel spinning pump-probe photoacoustic technique developed to study nonlinear absorption in thin films. As a test case, an organic polycrystalline thin film of quinacridone, a well-known pigment, with a thickness in the tens of nanometers range, is excited by a femtosecond laser pulse which generates a time-domain Brillouin scattering signal. This signal is directly related to the strain wave launched from the film into the substrate and can be used to quantitatively extract the nonlinear optical absorption properties of the film itself. Quinacridone exhibits both quadratic and cubic laser fluence dependence regimes which we show to correspond to two- and three-photon absorption processes. This technique can be broadly applied to materials that are difficult or impossible to characterize with conventional transmittance-based measurements including materials at the nanoscale, prone to laser damage, with very weak nonlinear properties, opaque, or highly scattering.

3.
J Chem Phys ; 152(1): 014202, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31914732

RESUMO

We demonstrate that time-domain Brillouin scattering (TDBS), a technique based on an ultrafast pump-probe approach, is sensitive to phase transitions and apply it to the study of structural changes in 8CB liquid crystals at different temperatures across the isotropic, nematic, smectic, and crystalline phases. We investigate the viscoelastic properties of 8CB squeezed in a narrow gap, from the nanometer to submicrometer thickness range, and conclude on the long-range molecular structuring of the smectic phase. These TDBS results reveal that confinement effects favor structuring of the smectic phase into a crystallinelike phase that can be observed at wide distances far beyond the molecular dimensions.

4.
Rev Sci Instrum ; 88(7): 074904, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764524

RESUMO

We present an optical technique based on ultrafast photoacoustics to determine the local temperature distribution profile in liquid samples in contact with a laser heated optical transducer. This ultrafast pump-probe experiment uses time-domain Brillouin scattering (TDBS) to locally determine the light scattering frequency shift. As the temperature influences the Brillouin scattering frequency, the TDBS signal probes the local laser-induced temperature distribution in the liquid. We demonstrate the relevance and the sensitivity of this technique for the measurement of the absolute laser-induced temperature gradient of a glass forming liquid prototype, glycerol, at different laser pump powers-i.e., different steady state background temperatures. Complementarily, our experiments illustrate how this TDBS technique can be applied to measure thermal diffusion in complex multilayer systems in contact with a surrounding liquid.

5.
Nat Commun ; 7: 12345, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27492493

RESUMO

The ability to generate efficient giga-terahertz coherent acoustic phonons with femtosecond laser makes acousto-optics a promising candidate for ultrafast light processing, which faces electronic device limits intrinsic to complementary metal oxide semiconductor technology. Modern acousto-optic devices, including optical mode conversion process between ordinary and extraordinary light waves (and vice versa), remain limited to the megahertz range. Here, using coherent acoustic waves generated at tens of gigahertz frequency by a femtosecond laser pulse, we reveal the mode conversion process and show its efficiency in ferroelectric materials such as BiFeO3 and LiNbO3. Further to the experimental evidence, we provide a complete theoretical support to this all-optical ultrafast mechanism mediated by acousto-optic interaction. By allowing the manipulation of light polarization with gigahertz coherent acoustic phonons, our results provide a novel route for the development of next-generation photonic-based devices and highlight new capabilities in using ferroelectrics in modern photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...