Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728314

RESUMO

Eukaryotic cells control inorganic phosphate to balance its role as essential macronutrient with its negative bioenergetic impact on reactions liberating phosphate. Phosphate homeostasis depends on the conserved INPHORS signaling pathway that utilizes inositol pyrophosphates and SPX receptor domains. Since cells synthesize various inositol pyrophosphates and SPX domains bind them promiscuously, it is unclear whether a specific inositol pyrophosphate regulates SPX domains in vivo, or whether multiple inositol pyrophosphates act as a pool. In contrast to previous models, which postulated that phosphate starvation is signaled by increased production of the inositol pyrophosphate 1-IP7, we now show that the levels of all detectable inositol pyrophosphates of yeast, 1-IP7, 5-IP7, and 1,5-IP8, strongly decline upon phosphate starvation. Among these, specifically the decline of 1,5-IP8 triggers the transcriptional phosphate starvation response, the PHO pathway. 1,5-IP8 inactivates the cyclin-dependent kinase inhibitor Pho81 through its SPX domain. This stimulates the cyclin-dependent kinase Pho85-Pho80 to phosphorylate the transcription factor Pho4 and repress the PHO pathway. Combining our results with observations from other systems, we propose a unified model where 1,5-IP8 signals cytosolic phosphate abundance to SPX proteins in fungi, plants, and mammals. Its absence triggers starvation responses.


Assuntos
Difosfatos , Saccharomyces cerevisiae , Animais , Quinases Ciclina-Dependentes , Mamíferos , Fosfatos , Saccharomyces cerevisiae/genética
2.
Angew Chem Int Ed Engl ; 59(30): 12331-12336, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31815351

RESUMO

Anaerobic microorganisms of the Geobacter genus are effective electron sources for the synthesis of nanoparticles, for bioremediation of polluted water, and for the production of electricity in fuel cells. In multistep reactions, electrons are transferred via iron/heme cofactors of c-type cytochromes from the inner cell membrane to extracellular metal ions, which are bound to outer membrane cytochromes. We measured electron production and electron flux rates to 5×105  e s-1 per G. sulfurreducens. Remarkably, these rates are independent of the oxidants, and follow zero order kinetics. It turned out that the microorganisms regulate electron flux rates by increasing their Fe2+ /Fe3+ ratios in the multiheme cytochromes whenever the activity of the extracellular metal oxidants is diminished. By this mechanism the respiration remains constant even when oxidizing conditions are changing. This homeostasis is a vital condition for living systems, and makes G. sulfurreducens a versatile electron source.

3.
Inorg Chem ; 58(20): 13796-13806, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31584806

RESUMO

Indium is a nonphysiological toxic metal widely used in industry. While misunderstood, its toxicity is proposed to be linked to a perturbation of Fe3+ homeostasis through the binding of In3+ ions to essential iron metalloproteins such as transferrins. Therefore, the monitoring of In3+ and Fe3+ in biological environments is of prime interest for both basic research and diagnosis. Here we report the design of a salen-type anthracene-based probe able to selectively sense and discriminate In3+ and Fe2+/3+ ions by fluoro-colorimetry.

4.
Chem Sci ; 10(12): 3608-3615, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30996953

RESUMO

All organisms have to cope with the deleterious effects of reactive oxygen species. Some of them are able to mount a transcriptional response to various oxidative stresses, which involves sensor proteins capable of assessing the redox status of the cell or to detect reactive oxygen species. In this article, we describe the design, synthesis and characterization of Zn·LASD(HHCC), a model for the Zn(Cys)2(His)2 zinc finger site of ChrR, a sensor protein involved in the bacterial defence against singlet oxygen that belongs to the family of zinc-binding anti-sigma factors possessing a characteristic H/C-X24/25-H-X3-C-X2-C motif. The 46-amino acid model peptide LASD(HHCC) was synthetized by solid phase peptide synthesis and its Zn2+-binding properties were investigated using electronic absorption, circular dichroism and NMR. LASD(HHCC) forms a 1 : 1 complex with Zn2+, namely Zn·LASD(HHCC), that adopts a well-defined conformation with the Zn2+ ion capping a 3-helix core that reproduces almost perfectly the fold of the ChrR in the vicinity of its zinc site. H2O2 reacts with Zn·LASD(HHCC) to yield a disulfide with a second order rate constant of 0.030 ± 0.002 M-1 s-1. Zn·LASD(HHCC) reacts rapidly with singlet oxygen to yield sulfinates and sulfonates. A lower limit of the chemical reaction rate constant between Zn·LASD(HHCC) and 1O2 was determined to be 3.9 × 106 M-1 s-1. Therefore, the Zn(Cys)2(His)2 site of Zn·LASD(HHCC) appears to be at least 5 times more reactive toward these two oxidants than that of a classical ßßα zinc finger. Consequences for the activation mechanism of ChrR are discussed.

5.
Chem Commun (Camb) ; 54(74): 10419-10422, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30132476

RESUMO

The SilE protein is suspected to have a prominent role in Ag+ detoxification of silver resistant bacteria. Using model peptides, we elucidated both qualitative and quantitative aspects of the Ag+-induced α-helical structuring role of His- and Met-rich sequences of SilE, improving our understanding of its function within the Sil system.

6.
New Phytol ; 217(1): 245-260, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29105089

RESUMO

Photosynthetic organisms such as plants, algae and some cyanobacteria synthesize tocochromanols, a group of compounds that encompasses tocopherols and tocotrienols and that exhibits vitamin E activity in animals. While most vitamin E biosynthetic genes have been identified in plant genomes, regulatory genes controlling tocopherol accumulation are currently unknown. We isolated by forward genetics Arabidopsis enhanced vitamin E (eve) mutants that overaccumulate the classic tocopherols and plastochromanol-8, and a tocochromanol unknown in this species. We mapped eve1 and eve4, and identified the unknown Arabidopsis tocochromanol by using a combination of analytical tools. In addition, we determined its biosynthetic pathway with a series of tocochromanol biosynthetic mutants and transgenic lines. eve1 and eve4 are two seed lipid mutants affecting the WRINKLED1 (WRI1) and ACYL-COA:DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) genes, respectively. The unknown tocochromanol is 11'-12' γ-tocomonoenol, whose biosynthesis is VITAMIN E 1 (VTE1) - and VTE2-dependent and is initiated by the condensation of homogentisate (HGA) and tetrahydrogeranylgeranyl pyrophosphate. This study identifies the first two regulatory genes, WRI1 and DGAT1, that control the synthesis of all tocochromanol forms in seeds, and shows the existence of a metabolic trade-off between lipid and tocochromanol metabolisms. Moreover, it shows that Arabidopsis possesses a tocomonoenol biosynthetic pathway that competes with tocopherol synthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Diglicerídeos/metabolismo , Fatores de Transcrição/metabolismo , Vitamina E/metabolismo , Acil Coenzima A/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Cromanos/metabolismo , Diacilglicerol O-Aciltransferase/genética , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Metabolismo dos Lipídeos , Sementes/enzimologia , Sementes/genética , Tocoferóis/metabolismo , Tocotrienóis/metabolismo , Fatores de Transcrição/genética , Vitamina E/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...