Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrophys J ; 525(1): L41-L44, 1999 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-10511509

RESUMO

A grid of stellar evolution models for Procyon A has been calculated. These models include the best physics available to us (including the latest opacities and equation of state) and are based on the revised astrometric mass of Girard et al. Models were calculated with helium diffusion and with the combined effects of helium and heavy-element diffusion. Oscillation frequencies for l=0, 1, 2, and 3 p-modes and the characteristic period spacing for the g-modes were calculated for these models. We find that g-modes are sensitive to model parameters that effect the structure of the core, such as convective core overshoot, the heavy-element abundance, and the evolutionary state (main sequence or shell hydrogen burning) of Procyon A. The p-modes are relatively insensitive to the details of the physics used to model Procyon A and only depend on the evolutionary state of Procyon A. Hence, observations of p-mode frequencies on Procyon A will serve as a robust test of stellar evolution models.

2.
Science ; 272(5266): 1286-92, 1996 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-8662456

RESUMO

Data from the Global Oscillation Network Group (GONG) project and other helioseismic experiments provide a test for models of stellar interiors and for the thermodynamic and radiative properties, on which the models depend, of matter under the extreme conditions found in the sun. Current models are in agreement with the helioseismic inferences, which suggests, for example, that the disagreement between the predicted and observed fluxes of neutrinos from the sun is not caused by errors in the models. However, the GONG data reveal subtle errors in the models, such as an excess in sound speed just beneath the convection zone. These discrepancies indicate effects that have so far not been correctly accounted for; for example, it is plausible that the sound-speed differences reflect weak mixing in stellar interiors, of potential importance to the overall evolution of stars and ultimately to estimates of the age of the galaxy based on stellar evolution calculations.

3.
Science ; 272(5266): 1296-300, 1996 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-8662458

RESUMO

Global Oscillation Network Group data reveal that the internal structure of the sun can be well represented by a calibrated standard model. However, immediately beneath the convection zone and at the edge of the energy-generating core, the sound-speed variation is somewhat smoother in the sun than it is in the model. This could be a consequence of chemical inhomogeneity that is too severe in the model, perhaps owing to inaccurate modeling of gravitational settling or to neglected macroscopic motion that may be present in the sun. Accurate knowledge of the sun's structure enables inferences to be made about the physics that controls the sun; for example, through the opacity, the equation of state, or wave motion. Those inferences can then be used elsewhere in astrophysics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...