Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 85: 103024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056203

RESUMO

Biopolymers produced as microbial carbon storage systems, such as polyhydroxyalkanoates (PHAs), offer potential to be used in place of petrochemically derived plastics. Low-value organic feedstocks, such as food waste, have been explored as a potential substrate for the microbial production of PHAs. In this review, we discuss the biosynthesis, composition and producers of PHAs, with a particular focus on the genetic and process engineering efforts to utilise non-native substrates, derived from food waste from across the entire supply chain, for microbial growth and PHA production. We highlight a series of studies that have achieved impressive advances and discuss the challenges of producing PHAs with consistent composition and properties from mixed and variable food waste and by-products.


Assuntos
Poli-Hidroxialcanoatos , Eliminação de Resíduos , Perda e Desperdício de Alimentos , Alimentos , Biopolímeros
2.
Appl Microbiol Biotechnol ; 107(13): 4165-4185, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212882

RESUMO

The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.


Assuntos
Vias Biossintéticas , Ácidos Cumáricos , Ácidos Cumáricos/metabolismo , Biomassa , Biocatálise , Engenharia Metabólica
3.
Biotechnol Lett ; 43(3): 667-675, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33219874

RESUMO

OBJECTIVE: A primary drawback to simultaneous saccharification and fermentation (SSF) processes is the incompatibility of the temperature and pH optima for the hydrolysis and fermentation steps-with the former working best at 50-55 °C and pH 4.5-5.5. Here, nine thermophilic Bacillus and Parageobacillus spp. were evaluated for growth and lactic acid fermentation at high temperature and low pH. The most promising candidate was then carried forward to demonstrate SSF using the cellulosic fraction from municipal solid waste (MSW) as a feedstock. RESULTS: B. smithii SA8Eth was identified as the most promising candidate and in a batch SSF maintained at 55 °C and pH 5.0, using a cellulase dose of 5 FPU/g glucan, it produced 5.1 g/L lactic acid from 2% (w/v) MSW cellulosic pulp in TSB media. CONCLUSION: This work has both scientific and industrial relevance, as it evaluates a number of previously untrialled bacterial hosts for their compatibility with lignocellulosic SSF for lactic acid production and successfully identifies B. smithii as a potential candidate for such a process.


Assuntos
Bacillus/metabolismo , Celulose/metabolismo , Fermentação/fisiologia , Ácido Láctico/metabolismo , Reatores Biológicos/microbiologia , Meios de Cultura/metabolismo , Glucose/metabolismo , Eliminação de Resíduos , Resíduos Sólidos , Temperatura
4.
PeerJ ; 7: e6971, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304053

RESUMO

Medium chain esters produced from fruits and flowering plants have a number of commercial applications including use as flavour and fragrance ingredients, biofuels, and in pharmaceutical formulations. These esters are typically made via the activity of an alcohol acyl transferase (AAT) enzyme which catalyses the condensation of an alcohol and an acyl-CoA. Developing a microbial platform for medium chain ester production using AAT activity presents several obstacles, including the low product specificity of these enzymes for the desired ester and/or low endogenous substrate availability. In this study, we engineered Escherichia coli for the production of butyl octanoate from endogenously produced octanoyl-CoA. This was achieved through rational protein engineering of an AAT enzyme from Actinidia chinensis for improved octanoyl-CoA substrate specificity and metabolic engineering of E. coli fatty acid metabolism for increased endogenous octanoyl-CoA availability. This resulted in accumulation of 3.3 + 0.1 mg/L butyl octanoate as the sole product from E. coli after 48 h. This study represents a preliminary examination of the feasibility of developing E. coli platforms for the synthesis single medium chain esters from endogenous fatty acids.

5.
Microb Cell Fact ; 18(1): 105, 2019 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176369

RESUMO

BACKGROUND: Geraniol, an acyclic monoterpene alcohol, is found as a primary constituent in the essential oils of plants such as geranium, lemongrass and rose. The floral-like scent of geraniol has made it a popular constituent of flavour and fragrance products. Over recent decades biotechnology has made significant progress towards the development of industrial platforms for the production of commercially valuable monoterpenoids, such as geraniol, through expression of recombinant terpene biosynthetic pathways in microbial hosts. Titres, however, have been hindered due to the inherent toxicity of these compounds-which are often utilised for anti-microbial and anti-fungal functions in their host plant. RESULTS: In this study we modified an Escherichia coli strain, engineered to express a heterologous mevalonate pathway, by replacement of the terpene synthase with a geraniol synthase from Ocimum basilicum for the production of geraniol, and co-expressed an alcohol acyltransferase (AAT) from Rosa hybrida for the specific acetylation of geraniol. The low water solubility of geranyl acetate facilitated its partition into the organic phase of a two-phase system, relieving the cellular toxicity attributed to the build-up of geraniol in the aqueous phase. In a partially optimised system this strain produced 4.8 g/L geranyl acetate (based on the aqueous volume) which, on a molar equivalent basis, represents the highest monoterpene titre achieved from microbial culture to date. It was also found that esterification of geraniol prevented bioconversion into other monoterpenoids, leading to a significant improvement in product specificity, with geranyl acetate being the sole product observed. CONCLUSION: In this study we have shown that it is possible to both overcome the toxicity limit impeding the production of the monoterpene alcohol geraniol and mitigate product loss in culture through endogenous metabolism by using an in vivo esterification strategy. This strategy has resulted in the highest geraniol (equivalent) titres achieved from a microbial host, and presents esterification as a viable approach to increasing the titres obtained in microbial monoterpenoid production.


Assuntos
Acetatos/metabolismo , Escherichia coli , Engenharia Metabólica/métodos , Terpenos/metabolismo , Monoterpenos Acíclicos , Escherichia coli/genética , Escherichia coli/metabolismo , Esterificação , Ácido Mevalônico/metabolismo , Organismos Geneticamente Modificados
6.
J Biol Chem ; 288(42): 30345-30355, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24005667

RESUMO

Fatty alcohols play a variety of biological roles in all kingdoms of life. Fatty acyl reductase (FAR) enzymes catalyze the reduction of fatty acyl-coenzyme A (CoA) or fatty acyl-acyl carrier protein substrates to primary fatty alcohols. FAR enzymes have distinct substrate specificities with regard to chain length and degree of saturation. FAR5 (At3g44550) and FAR8 (At3g44560) from Arabidopsis thaliana are 85% identical at the amino acid level and are of equal length, but they possess distinct specificities for 18:0 or 16:0 acyl chain length, respectively. We used Saccharomyces cerevisiae as a heterologous expression system to assess FAR substrate specificity determinants. We identified individual amino acids that affect protein levels or 16:0-CoA versus 18:0-CoA specificity by expressing in yeast FAR5 and FAR8 domain-swap chimeras and site-specific mutants. We found that a threonine at position 347 and a serine at position 363 were important for high FAR5 and FAR8 protein accumulation in yeast and thus are likely important for protein folding and stability. Amino acids at positions 355 and 377 were important for dictating 16:0-CoA versus 18:0-CoA chain length specificity. Simultaneously converting alanine 355 and valine 377 of FAR5 to the corresponding FAR8 residues, leucine and methionine, respectively, almost fully converted FAR5 specificity from 18:0-CoA to 16:0-CoA. The reciprocal amino acid conversions, L355A and M377V, made in the active FAR8-S363P mutant background converted its specificity from 16:0-CoA to 18:0-CoA. This study is an important advancement in the engineering of highly active FAR proteins with desired specificities for the production of fatty alcohols with industrial value.


Assuntos
Acil Coenzima A/metabolismo , Aldeído Oxirredutases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Dobramento de Proteína , Acil Coenzima A/genética , Aldeído Oxirredutases/genética , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Estabilidade Enzimática/fisiologia , Expressão Gênica , Mutação de Sentido Incorreto , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...