Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAAD Int ; 15: 185-191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38651039

RESUMO

Background: Artificial intelligence (AI) enabled tools have been proposed as 1 solution to improve health care delivery. However, research on downstream effects of AI integration into the clinical workflow is lacking. Objective: We aim to analyze how integration of an automated basal cell carcinoma detection and tumor mapping algorithm in a Mohs micrographic surgery unit impacts the work efficiency of clinical and laboratory staff. Methods: Slide, staff, and histotechnician waiting times were analyzed over a 20-day period in a Mohs micrographic surgery unit. A simulated AI workflow was created and the time differences between the real and simulated workflows were compared. Results: Simulated nonautonomous algorithm integration led to savings of 35.6% of slide waiting time, 18.4% of staff waiting time, and 18.6% of histotechnician waiting time per day. Algorithm integration on days with increased reconstruction complexity resulted in the greatest time savings. Limitations: One Mohs micrographic surgery unit was analyzed and simulated AI integration was performed retrospectively. Conclusions: AI integration results in reduced staff waiting times, enabling increased productivity and a streamlined clinical workflow. Schedules containing surgical cases with either increased repair complexity or numerous tumor removal stages stand to benefit most. However, significant logistical challenges must be addressed before broad adoption into clinical practice is realistic.

2.
Med Educ Online ; 29(1): 2315684, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38351737

RESUMO

Artificial intelligence (AI) is rapidly being introduced into the clinical workflow of many specialties. Despite the need to train physicians who understand the utility and implications of AI and mitigate a growing skills gap, no established consensus exists on how to best introduce AI concepts to medical students during preclinical training. This study examined the effectiveness of a pilot Digital Health Scholars (DHS) non-credit enrichment elective that paralleled the Dartmouth Geisel School of Medicine's first-year preclinical curriculum with a focus on introducing AI algorithms and their applications in the concurrently occurring systems-blocks. From September 2022 to March 2023, ten self-selected first-year students enrolled in the elective curriculum run in parallel with four existing curricular blocks (Immunology, Hematology, Cardiology, and Pulmonology). Each DHS block consisted of a journal club, a live-coding demonstration, and an integration session led by a researcher in that field. Students' confidence in explaining the content objectives (high-level knowledge, implications, and limitations of AI) was measured before and after each block and compared using Mann-Whitney U tests. Students reported significant increases in confidence in describing the content objectives after all four blocks (Immunology: U = 4.5, p = 0.030; Hematology: U = 1.0, p = 0.009; Cardiology: U = 4.0, p = 0.019; Pulmonology: U = 4.0, p = 0.030) as well as an average overall satisfaction level of 4.29/5 in rating the curriculum content. Our study demonstrates that a digital health enrichment elective that runs in parallel to an institution's preclinical curriculum and embeds AI concepts into relevant clinical topics can enhance students' confidence in describing the content objectives that pertain to high-level algorithmic understanding, implications, and limitations of the studied models. Building on this elective curricular design, further studies with a larger enrollment can help determine the most effective approach in preparing future physicians for the AI-enhanced clinical workflow.


Assuntos
Inteligência Artificial , Estudantes de Medicina , Humanos , Projetos Piloto , Currículo , Atenção à Saúde
3.
NPJ Precis Oncol ; 8(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172524

RESUMO

Successful treatment of solid cancers relies on complete surgical excision of the tumor either for definitive treatment or before adjuvant therapy. Intraoperative and postoperative radial sectioning, the most common form of margin assessment, can lead to incomplete excision and increase the risk of recurrence and repeat procedures. Mohs Micrographic Surgery is associated with complete removal of basal cell and squamous cell carcinoma through real-time margin assessment of 100% of the peripheral and deep margins. Real-time assessment in many tumor types is constrained by tissue size, complexity, and specimen processing / assessment time during general anesthesia. We developed an artificial intelligence platform to reduce the tissue preprocessing and histological assessment time through automated grossing recommendations, mapping and orientation of tumor to the surgical specimen. Using basal cell carcinoma as a model system, results demonstrate that this approach can address surgical laboratory efficiency bottlenecks for rapid and complete intraoperative margin assessment.

4.
Exp Dermatol ; 33(1): e14949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37864429

RESUMO

Intraoperative margin analysis is crucial for the successful removal of cutaneous squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have previously demonstrated potential for facilitating rapid and complete tumour removal using intraoperative margin assessment for basal cell carcinoma. However, the varied morphologies of cSCC present challenges for AI margin assessment. The aim of this study was to develop and evaluate the accuracy of an AI algorithm for real-time histologic margin analysis of cSCC. To do this, a retrospective cohort study was conducted using frozen cSCC section slides. These slides were scanned and annotated, delineating benign tissue structures, inflammation and tumour to develop an AI algorithm for real-time margin analysis. A convolutional neural network workflow was used to extract histomorphological features predictive of cSCC. This algorithm demonstrated proof of concept for identifying cSCC with high accuracy, highlighting the potential for integration of AI into the surgical workflow. Incorporation of AI algorithms may improve efficiency and completeness of real-time margin assessment for cSCC removal, particularly in cases of moderately and poorly differentiated tumours/neoplasms. Further algorithmic improvement incorporating surrounding tissue context is necessary to remain sensitive to the unique epidermal landscape of well-differentiated tumours, and to map tumours to their original anatomical position/orientation.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Aprendizado Profundo , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , Cirurgia de Mohs , Neoplasias Cutâneas/patologia , Estudos Retrospectivos , Secções Congeladas , Inteligência Artificial , Carcinoma Basocelular/patologia
5.
medRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37293008

RESUMO

Importance: Intraoperative margin analysis is crucial for the successful removal of cutaneous squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have previously demonstrated potential for facilitating rapid and complete tumor removal using intraoperative margin assessment for basal cell carcinoma. However, the varied morphologies of cSCC present challenges for AI margin assessment. Objective: To develop and evaluate the accuracy of an AI algorithm for real-time histologic margin analysis of cSCC. Design: A retrospective cohort study was conducted using frozen cSCC section slides and adjacent tissues. Setting: This study was conducted in a tertiary care academic center. Participants: Patients undergoing Mohs micrographic surgery for cSCC between January and March 2020. Exposures: Frozen section slides were scanned and annotated, delineating benign tissue structures, inflammation, and tumor to develop an AI algorithm for real-time margin analysis. Patients were stratified by tumor differentiation status. Epithelial tissues including epidermis and hair follicles were annotated for moderate-well to well differentiated cSCC tumors. A convolutional neural network workflow was used to extract histomorphological features predictive of cSCC at 50-micron resolution. Main Outcomes and Measures: The performance of the AI algorithm in identifying cSCC at 50-micron resolution was reported using the area under the receiver operating characteristic curve. Accuracy was also reported by tumor differentiation status and by delineation of cSCC from epidermis. Model performance using histomorphological features alone was compared to architectural features (i.e., tissue context) for well-differentiated tumors. Results: The AI algorithm demonstrated proof of concept for identifying cSCC with high accuracy. Accuracy differed by differentiation status, driven by challenges in separating cSCC from epidermis using histomorphological features alone for well-differentiated tumors. Consideration of broader tissue context through architectural features improved the ability to delineate tumor from epidermis. Conclusions and Relevance: Incorporating AI into the surgical workflow may improve efficiency and completeness of real-time margin assessment for cSCC removal, particularly in cases of moderately and poorly differentiated tumors/neoplasms. Further algorithmic improvement is necessary to remain sensitive to the unique epidermal landscape of well-differentiated tumors, and to map tumors to their original anatomical position/orientation. Future studies should assess the efficiency improvements and cost benefits and address other confounding pathologies such as inflammation and nuclei. Funding sources: JL is supported by NIH grants R24GM141194, P20GM104416 and P20GM130454. Support for this work was also provided by the Prouty Dartmouth Cancer Center development funds. Key Points: Question: How can the efficiency and accuracy of real-time intraoperative margin analysis for the removal of cutaneous squamous cell carcinoma (cSCC) be improved, and how can tumor differentiation be incorporated into this approach?Findings: A proof-of-concept deep learning algorithm was trained, validated, and tested on frozen section whole slide images (WSI) for a retrospective cohort of cSCC cases, demonstrating high accuracy in identifying cSCC and related pathologies. Histomorphology alone was found to be insufficient to delineate tumor from epidermis in histologic identification of well-differentiated cSCC. Incorporation of surrounding tissue architecture and shape improved the ability to delineate tumor from normal tissue.Meaning: Integrating artificial intelligence into surgical procedures has the potential to enhance the thoroughness and efficiency of intraoperative margin analysis for cSCC removal. However, accurately accounting for the epidermal tissue based on the tumor's differentiation status requires specialized algorithms that consider the surrounding tissue context. To meaningfully integrate AI algorithms into clinical practice, further algorithmic refinement is needed, as well as the mapping of tumors to their original surgical site, and evaluation of the cost and efficacy of these approaches to address existing bottlenecks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...