Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 186(12): 8109-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25112842

RESUMO

The spatial variation of chlorophyll a (Chl a) and factors influencing the high Chl a were studied during austral summer based on the physical and biogeochemical parameters collected near the coastal waters of Antarctica in 2010 and a zonal section along 60°S in 2011. In the coastal waters, high Chl a (>3 mg m(-3)) was observed near the upper layers (∼15 m) between 53°30'E and 54°30'E. A comparatively higher mesozooplankton biomass (53.33 ml 100 m(-3)) was also observed concordant with the elevated Chl a. Low saline water formed by melting of glacial ice and snow, as well as deep mixed-layer depth (60 m) due to strong wind (>11 ms(-1)) could be the dominant factors for this biological response. In the open ocean, moderately high surface Chl a was observed (>0.6 mg m(-3)) between 47°E and 50°E along with a Deep Chlorophyll Maximum of ∼1 mg m(-3) present at 30-40 m depth. Melt water advected from the Antarctic continent could be the prime reason for this high Chl a. The mesozooplankton biomass (22.76 ml 100 m(-3)) observed in the open ocean was comparatively lower than that in the coastal waters. Physical factors such as melting, advection of melt water from Antarctic continent, water masses and wind-induced vertical mixing may be the possible reasons that led to the increase in phytoplankton biomass (Chl a).


Assuntos
Monitoramento Ambiental , Fenômenos Físicos , Regiões Antárticas , Biomassa , Clorofila/análise , Clorofila A , Oceano Índico , Fitoplâncton/fisiologia , Estações do Ano , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...