Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Res ; 99(9): 2216-2227, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051113

RESUMO

Oligodendrocyte progenitor cells (OPCs) are responsible for generating oligodendrocytes, the myelinating cells of the CNS. Life-long myelination is promoted by neuronal activity and is essential for neural network plasticity and learning. OPCs are known to contact synapses and it is proposed that neuronal synaptic activity in turn regulates their behavior. To examine this in the adult, we performed unilateral injection of the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of adult mice. We confirm BoNT/A cleaves SNAP-25 in the CA1 are of the hippocampus, which has been proven to block neurotransmission. Notably, BoNT/A significantly decreased OPC density and caused their shrinkage, as determined by immunolabeling for the OPC marker NG2. Furthermore, BoNT/A resulted in an overall decrease in the number of OPC processes, as well as a decrease in their lengths and branching frequency. These data indicate that synaptic activity is important for maintaining adult OPC numbers and cellular integrity, which is relevant to pathophysiological scenarios characterized by dysregulation of synaptic activity, such as age-related cognitive decline, Multiple Sclerosis and Alzheimer's disease.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Contagem de Células/métodos , Hipocampo/citologia , Hipocampo/patologia , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Células Precursoras de Oligodendrócitos/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Sinapses/patologia , Sinapses/fisiologia
2.
Pflugers Arch ; 473(5): 775-783, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33712969

RESUMO

White matter (WM) is a highly prominent feature in the human cerebrum and is comprised of bundles of myelinated axons that form the connectome of the brain. Myelin is formed by oligodendrocytes and is essential for rapid neuronal electrical communication that underlies the massive computing power of the human brain. Oligodendrocytes are generated throughout life by oligodendrocyte precursor cells (OPCs), which are identified by expression of the chondroitin sulphate proteoglycan NG2 (Cspg4), and are often termed NG2-glia. Adult NG2+ OPCs are slowly proliferating cells that have the stem cell-like property of self-renewal and differentiation into a pool of 'late OPCs' or 'differentiation committed' OPCs(COPs) identified by specific expression of the G-protein-coupled receptor GPR17, which are capable of differentiation into myelinating oligodendrocytes. In the adult brain, these reservoirs of OPCs and COPs ensure rapid myelination of new neuronal connections formed in response to neuronal signalling, which underpins learning and cognitive function. However, there is an age-related decline in myelination that is associated with a loss of neuronal function and cognitive decline. The underlying causes of myelin loss in ageing are manifold, but a key factor is the decay in OPC 'stemness' and a decline in their replenishment of COPs, which results in the ultimate failure of myelin regeneration. These changes in ageing OPCs are underpinned by dysregulation of neuronal signalling and OPC metabolic function. Here, we highlight the role of purine signalling in regulating OPC self-renewal and the potential importance of GPR17 and the P2X7 receptor subtype in age-related changes in OPC metabolism. Moreover, age is the main factor in the failure of myelination in chronic multiple sclerosis and myelin loss in Alzheimer's disease, hence understanding the importance of purine signalling in OPC regeneration and myelination is critical for developing new strategies for promoting repair in age-dependent neuropathology.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Oligodendroglia/metabolismo , Purinas/metabolismo , Animais , Axônios/metabolismo , Axônios/fisiologia , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Humanos , Oligodendroglia/fisiologia , Transdução de Sinais
3.
Aging Cell ; 20(4): e13335, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675110

RESUMO

Brain ageing is characterised by a decline in neuronal function and associated cognitive deficits. There is increasing evidence that myelin disruption is an important factor that contributes to the age-related loss of brain plasticity and repair responses. In the brain, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Currently, a leading hypothesis points to ageing as a major reason for the ultimate breakdown of remyelination in Multiple Sclerosis (MS). However, an incomplete understanding of the cellular and molecular processes underlying brain ageing hinders the development of regenerative strategies. Here, our combined systems biology and neurobiological approach demonstrate that oligodendroglial and myelin genes are amongst the most altered in the ageing mouse cerebrum. This was underscored by the identification of causal links between signalling pathways and their downstream transcriptional networks that define oligodendroglial disruption in ageing. The results highlighted that the G-protein coupled receptor Gpr17 is central to the disruption of OPCs in ageing and this was confirmed by genetic fate-mapping and cellular analyses. Finally, we used systems biology strategies to identify therapeutic agents that rejuvenate OPCs and restore myelination in age-related neuropathological contexts.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Cérebro/metabolismo , Genômica/métodos , Bainha de Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Células Precursoras de Oligodendrócitos/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Animais , Diferenciação Celular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , RNA-Seq/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transcriptoma/genética
4.
Front Cell Neurosci ; 14: 575082, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343301

RESUMO

Myelin disruption is a feature of natural aging and Alzheimer's disease (AD). In the CNS, myelin is produced by oligodendrocytes, which are generated throughout life by oligodendrocyte progenitor cells (OPCs). Here, we examined age-related changes in OPCs in APP/PS1 mice, a model for AD-like pathology, compared with non-transgenic (Tg) age-matched controls. The analysis was performed in the CA1 area of the hippocampus following immunolabeling for NG2 with the nuclear dye Hoescht, to identify OPC and OPC sister cells, a measure of OPC replication. The results indicate a significant decrease in the number of OPCs at 9 months in APP/PS1 mice, compared to age-matched controls, without further decline at 14 months. Also, the number of OPC sister cells declined significantly at 14 months in APP/PS1 mice, which was not observed in age-matched controls. Notably, OPCs also displayed marked morphological changes at 14 months in APP/PS1 mice, characterized by an overall shrinkage of OPC process domains and increased process branching. The results indicate that OPC disruption is a pathological sign in the APP/PS1 mouse model of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...