Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(31): e2119333119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878034

RESUMO

River deltas are home to hundreds of millions of people worldwide and are in danger of sinking due to anthropogenic sea-level rise, land subsidence, and reduced sediment supply. Land loss is commonly forecast by averaging river sediment supply across the entire delta plain to assess whether deposition can keep pace with sea-level rise. However, land loss and deposition vary across the landscape because rivers periodically jump course, rerouting sediment to distinct subregions called delta lobes. Here, we developed a model to forecast land loss that resolves delta lobes and tested the model against a scaled laboratory experiment. Both the model and the experiment show that rivers build land on the active lobe, but the delta incurs gradual land loss on inactive lobes that are cut off from sediment after the river abandons course. The result is a band of terrain along the coast that is usually drowned but is nonetheless a sink for sediment when the lobe is active, leaving less of the total sediment supply available to maintain persistent dry land. Land loss is expected to be more extensive than predicted by classical delta-plain-averaged models. Estimates for eight large deltas worldwide suggest that roughly half of the riverine sediment supply is delivered to terrain that undergoes long periods of submergence. These results draw the sustainability of deltas further into question and provide a framework to plan engineered diversions at a pace that will mitigate land loss in the face of rising sea levels.


Assuntos
Modelos Teóricos , Rios , Elevação do Nível do Mar , Conservação dos Recursos Naturais
2.
Science ; 376(6596): 987-990, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35617405

RESUMO

Rivers can abruptly shift pathways in rare events called avulsions, which cause devastating floods. The controls on avulsion locations are poorly understood as a result of sparse data on such features. We analyzed nearly 50 years of satellite imagery and documented 113 avulsions across the globe that indicate three distinct controls on avulsion location. Avulsions on fans coincide with valley-confinement change, whereas avulsions on deltas are primarily clustered within the backwater zone, indicating a control by spatial flow deceleration or acceleration during floods. However, 38% of avulsions on deltas occurred upstream of backwater effects. These events occurred in steep, sediment-rich rivers in tropical and desert environments. Our results indicate that avulsion location on deltas is set by the upstream extent of flood-driven erosion, which is typically limited to the backwater zone but can extend far upstream in steep, sediment-laden rivers. Our findings elucidate how avulsion hazards might respond to land use and climate change.


Assuntos
Inundações , Rios , Mudança Climática
3.
Appl Environ Microbiol ; 87(20): e0133921, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34347514

RESUMO

Permafrost soils store approximately twice the amount of carbon currently present in Earth's atmosphere and are acutely impacted by climate change due to the polar amplification of increasing global temperature. Many organic-rich permafrost sediments are located on large river floodplains, where river channel migration periodically erodes and redeposits the upper tens of meters of sediment. Channel migration exerts a first-order control on the geographic distribution of permafrost and floodplain stratigraphy and thus may affect microbial habitats. To examine how river channel migration in discontinuous permafrost environments affects microbial community composition, we used amplicon sequencing of the 16S rRNA gene on sediment samples from floodplain cores and exposed riverbanks along the Koyukuk River, a large tributary of the Yukon River in west-central Alaska. Microbial communities are sensitive to permafrost thaw: communities found in deep samples thawed by the river closely resembled near-surface active-layer communities in nonmetric multidimensional scaling analyses but did not resemble floodplain permafrost communities at the same depth. Microbial communities also displayed lower diversity and evenness in permafrost than in both the active layer and permafrost-free point bars recently deposited by river channel migration. Taxonomic assignments based on 16S and quantitative PCR for the methyl coenzyme M reductase functional gene demonstrated that methanogens and methanotrophs are abundant in older permafrost-bearing deposits but not in younger, nonpermafrost point bar deposits. The results suggested that river migration, which regulates the distribution of permafrost, also modulates the distribution of microbes potentially capable of producing and consuming methane on the Koyukuk River floodplain. IMPORTANCE Arctic lowlands contain large quantities of soil organic carbon that is currently sequestered in permafrost. With rising temperatures, permafrost thaw may allow this carbon to be consumed by microbial communities and released to the atmosphere as carbon dioxide or methane. We used gene sequencing to determine the microbial communities present in the floodplain of a river running through discontinuous permafrost. We found that the river's lateral movement across its floodplain influences the occurrence of certain microbial communities-in particular, methane-cycling microbes were present on the older, permafrost-bearing eroding riverbank but absent on the newly deposited river bars. Riverbank sediment had microbial communities more similar to those of the floodplain active-layer samples than permafrost samples from the same depth. Therefore, spatial patterns of river migration influence the distribution of microbial taxa relevant to the warming Arctic climate.


Assuntos
Microbiota , Pergelissolo/microbiologia , Rios/microbiologia , Alaska , Ciclo do Carbono , Movimentos da Água
4.
Proc Natl Acad Sci U S A ; 117(30): 17584-17590, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32661152

RESUMO

Sea-level rise, subsidence, and reduced fluvial sediment supply are causing river deltas to drown worldwide, affecting ecosystems and billions of people. Abrupt changes in river course, called avulsions, naturally nourish sinking land with sediment; however, they also create catastrophic flood hazards. Existing observations and models conflict on whether the occurrence of avulsions will change due to relative sea-level rise, hampering the ability to forecast delta response to global climate change. Here, we combined theory, numerical modeling, and field observations to develop a mechanistic framework to predict avulsion frequency on deltas with multiple self-formed lobes that scale with backwater hydrodynamics. Results show that avulsion frequency is controlled by the competition between relative sea-level rise and sediment supply that drives lobe progradation. We find that most large deltas are experiencing sufficiently low progradation rates such that relative sea-level rise enhances aggradation rates-accelerating avulsion frequency and associated hazards compared to preindustrial conditions. Some deltas may face even greater risk; if relative sea-level rise significantly outpaces sediment supply, then avulsion frequency is maximized, delta plains drown, and avulsion locations shift inland, posing new hazards to upstream communities. Results indicate that managed deltas can support more frequent engineered avulsions to recover sinking land; however, there is a threshold beyond which coastal land will be lost, and mitigation efforts should shift upstream.

5.
Sci Adv ; 2(5): e1501768, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386534

RESUMO

River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node-the location where the river course periodically and abruptly shifts-that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars.


Assuntos
Inundações , Hidrodinâmica , Rios , Movimentos da Água , Modelos Teóricos , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...