Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (191)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688558

RESUMO

Coral reefs thrive and provide maximal ecosystem services when they support a multi-level trophic structure and grow in favorable water quality conditions that include high light levels, rapid water flow, and low nutrient levels. Poor water quality and other anthropogenic stressors have caused coral mortality in recent decades, leading to trophic downgrading and the loss of biological complexity on many reefs. Solutions to reverse the causes of trophic downgrading remain elusive, in part because efforts to restore reefs are often attempted in the same diminished conditions that caused coral mortality in the first place. Coral Arks, positively buoyant, midwater structures, are designed to provide improved water quality conditions and supportive cryptic biodiversity for translocated and naturally recruited corals to assemble healthy reef mesocosms for use as long-term research platforms. Autonomous Reef Monitoring Structures (ARMS), passive settlement devices, are used to translocate the cryptic reef biodiversity to the Coral Arks, thereby providing a "boost" to natural recruitment and contributing ecological support to the coral health. We modeled and experimentally tested two designs of Arks to evaluate the drag characteristics of the structures and assess their long-term stability in the midwater based on their response to hydrodynamic forces. We then installed two designs of Arks structures at two Caribbean reef sites and measured several water quality metrics associated with the Arks environment over time. At deployment and 6 months after, the Coral Arks displayed enhanced metrics of reef function, including higher flow, light, and dissolved oxygen, higher survival of translocated corals, and reduced sedimentation and microbialization relative to nearby seafloor sites at the same depth. This method provides researchers with an adaptable, long-term platform for building reef communities where local water quality conditions can be adjusted by altering deployment parameters such as the depth and site.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Antozoários/fisiologia , Índias Ocidentais , Qualidade da Água
2.
Environ Toxicol Chem ; 41(6): 1568-1574, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35199881

RESUMO

Activated carbon-based amendments have been demonstrated as a means of sequestering sediment-associated organic compounds such as polychlorinated biphenyls (PCBs). In a 2012 effort, an activated carbon amendment was placed at a 0.5-acre amendment area adjacent to and underneath Pier 7 at the Puget Sound Naval Shipyard and Intermediate Maintenance Facility, Bremerton, Washington, USA to reduce PCB availability. Multiple postplacement monitoring events over a 3-year period showed an 80%-90% reduction in PCBs, stability of activated carbon, and no significant negative impacts to the benthic community. To further evaluate the long-term performance, a follow-on to the approximately 7-year (82-month) postplacement monitoring event was conducted in 2019. The results of in situ porewater and bioaccumulation evaluations were consistent with previous observations, indicating overall PCB availability reductions of approximately 80%-90% from preamendment conditions. Multiple measurement approaches for quantifying activated carbon and amendment presence indicated that the amendment was present and stable in the amendment area and that the activated carbon content was similar to levels observed previously. As in the previous investigation, benthic invertebrate community metrics indicated that the amendment did not significantly impair benthic health. An application of carbon petrography to quantify activated carbon content in surface sediments was also explored. The results were found to correspond within a factor of 1.3 (on average) with those of data for the black carbon content via a black carbon chemical oxidation method, an approach that quantifies all forms of black carbon (including activated carbon). The results suggest that at sites with low soot-derived black carbon content in sediment (relative to the targeted activated carbon dose), the black carbon chemical oxidation method would be a reasonable method for measurement of activated carbon dosage in sediment at sites amended with activated carbon. Environ Toxicol Chem 2022;41:1568-1574. © 2022 SETAC.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Carvão Vegetal/química , Sedimentos Geológicos/química , Invertebrados , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise
3.
Environ Toxicol Chem ; 39(1): 229-239, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622513

RESUMO

To assess potential impacts on receiving systems, associated with storm water contaminants, laboratory 10-d amphipod (Eohaustorius estuarius) survival toxicity tests were performed using intact sediment cores collected from Paleta Creek (San Diego Bay, CA, USA) on 5 occasions between 2015 and 2017. The approach included deposition-associated sediment particles collected from sediment traps placed at each of 4 locations during the 2015 to 2016 wet seasons. The bioassays demonstrated wet season toxicity, especially closest to the creek mouth, and greater mortality associated with particles deposited in the wet season compared with dry season samples. Grain size analysis of sediment trap material indicated coarser sediment at the mouth of the creek and finer sediment in the outer depositional areas. Contaminant concentrations of metals (Cd, Cu, Hg, Ni, Pb, and Zn) and organic compounds (polycyclic aromatic hydrocarbons [PAHs], polychlorinated biphenyls [PCBs], and pesticides) were quantified to assess possible causes of toxicity. Contaminant concentrations were determined in the top 5 cm of sediment and porewater (using passive samplers). Whereas metals, PAHs, and PCBs were rarely detected at sufficient concentrations to elicit a response, pyrethroid pesticides were highly correlated with amphipod toxicity. Summing individual pyrethroid constituents using a toxic unit approach suggested that toxicity to E. estuarius could be associated with pyrethroids. This unique test design allowed delineation of spatial and temporal differences in toxicity, suggesting that storm water discharge from Paleta Creek may be the source of seasonal toxicity. Environ Toxicol Chem 2019;39:229-239. © 2019 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Baías/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Estações do Ano , Poluentes Químicos da Água/toxicidade , Animais , California , Testes de Toxicidade , Poluentes Químicos da Água/análise
4.
Environ Toxicol Chem ; 37(6): 1767-1777, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29480553

RESUMO

In situ amendment of surface sediment with activated carbon is a promising technique for reducing the availability of hydrophobic organic compounds in surface sediment. The present study evaluated the performance of a logistically challenging activated carbon placement in a high-energy hydrodynamic environment adjacent to and beneath a pier in an active military harbor. Measurements conducted preamendment and 10, 21, and 33 months (mo) postamendment using in situ exposures of benthic invertebrates and passive samplers indicated that the targeted 4% (by weight) addition of activated carbon (particle diameter ≤74 µm) in the uppermost 10 cm of surface sediment reduced polychlorinated biphenyl availability by an average (± standard deviation) of 81 ± 11% in the first 10 mo after amendment. The final monitoring event (33 mo after amendment) indicated an approximate 90 ± 6% reduction in availability, reflecting a slight increase in performance and showing the stability of the amendment. Benthic invertebrate census and sediment profile imagery did not indicate significant differences in benthic community ecological metrics among the preamendment and 3 postamendment monitoring events, supporting existing scientific literature that this approximate activated carbon dosage level does not significantly impair native benthic invertebrate communities. Recommendations for optimizing typical site-specific assessments of activated carbon performance are also discussed and include quantifying reductions in availability and confirming placement of activated carbon. Environ Toxicol Chem 2018;37:1767-1777. Published 2018 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Carvão Vegetal/química , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Animais , Biota , Sedimentos Geológicos/química , Invertebrados
5.
ChemSusChem ; 7(10): 2898-906, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25154833

RESUMO

In this study, multiple reaction mechanisms in cathodes of sediment microbial fuel cells (SMFCs) were characterized by using cyclic voltammetry and microelectrode measurements of dissolved oxygen and pH. The cathodes were acclimated in SMFCs with sediment and seawater from San Diego Bay. Two limiting current regions were observed with onset potentials of approximately +400 mVAg/AgCl for limiting current I and -120 mVAg/AgCl for limiting current II. The appearance of two catalytic waves suggests that multiple cathodic reaction mechanisms influence cathodic performance. Microscale oxygen concentration measurements showed a zero surface concentration at the electrode surface for limiting current II but not for limiting current I, which allowed us to distinguish limiting current II as the conventional oxygen reduction reaction and limiting current I as a currently unidentified cathodic reaction mechanism. Microscale pH measurements further confirmed these results.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Biofilmes/crescimento & desenvolvimento , Eletrodos/microbiologia , Água do Mar/química , California , Técnicas Eletroquímicas , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Oxigênio/análise , Oxigênio/química , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...