Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(6): 1656-1662, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36753607

RESUMO

Green emissive InP-based quantum dots (QDs) remain less developed than red QDs because of the difficulty of controlling the reactivity of small InP cores. Herein, we report the synthesis of monodispersed green InP-based QDs using tris(dimethylamino)phosphine, a considerably inexpensive and safer phosphorus source compared to conventional tris(trimethylsilyl)phosphine. An organophosphorus compound, trioctylphosphine, was used to control the reaction kinetics by slowing the progression of the nucleation process, which weakened the aggregation behavior of the clusters and improved the size distribution. The synthesized green emissive InP/ZnSeS/ZnS QDs exhibited a photoluminescence (PL) peak at 515 nm with an enhancement of the full width at half-maximum from 66 to 46 nm and the PL quantum yield from 61% to 70%. An electroluminescent device was fabricated, and the electron transport layer was optimized by changing the layer thickness. The optimized device structure improved the charge balance and increased the external quantum efficiency from 2.1% to 3.5%.

2.
ACS Omega ; 7(48): 43492-43498, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506148

RESUMO

The adsorption of peptides and proteins on hydrophobic solid surfaces has received considerable research attention owing to their wide applications to biocompatible nanomaterials and nanodevices, such as biosensors and cell adhesion materials with reduced nanomaterial toxicity. However, fundamental understandings about physicochemical hydrophobic interactions between peptides and hydrophobic solid surfaces are still unknown. In this study, we investigate the effect of secondary structures on adsorption energies between peptides and hydrophobic solid surfaces via experimental and theoretical analyses using surface-assisted laser desorption/ionization-time-of-flight (SALDI-TOF) and molecular dynamics (MD) simulations. The hydrophobic interactions between peptides and hydrophobic solid surfaces measured via SALDI-TOF and MD simulations indicate that the hydrophobic interaction of peptides with random coil structures increased more than that of peptides with an α-helix structure when polar amino acids are replaced with hydrophobic amino acids. Additionally, our study sheds new light on the fundamental understanding of the hydrophobic interaction between hydrophobic solid surfaces and peptides that have diverse secondary structures.

3.
ACS Appl Mater Interfaces ; 14(30): 35167-35176, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876566

RESUMO

The role of a self-assembled monolayer obtained by vacuum deposition of 4-aminopyridine (4-AP), a small organic molecule having amine and pyridine groups, as a metal nucleation inducer and adhesion promoter was verified, and the applicability was evaluated. 4-AP deposited to an extremely thin thickness effectively changed the substrate surface properties, increasing the nucleation density of silver (Ag) more than 3 times and eventually forming a more transparent, low-resistance Ag thin film. The optical transmittance of the Ag thin film, which was less than 60% when 4-AP was not applied, could be increased to about 77% by simply applying 4-AP, and the electrical resistance could be lowered from 37 to 14 Ω/square at the same time. Transmittance could be further improved to higher than 90% by depositing an antireflection layer for use as a transparent Ag electrode. It was also verified that 4-AP not only serves as a nucleation inducer but also contributes to improving interfacial adhesion. The Ag transparent electrode using 4-AP provided the improved performance of the organic light-emitting device due to higher transmittance, lower resistance, and surface roughness. Small organic molecules including functional groups that can be vacuum deposited, such as 4-AP, are expected to be used as surface pretreatment materials for various depositions because they can be easily patterned and can efficiently modify the surface even with extremely thin thickness.

4.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458016

RESUMO

Field-effect transistors (FET) composed of transition metal dichalcogenide (TMDC) materials have gained huge importance as biosensors due to their added advantage of high sensitivity and moderate bandgap. However, the true potential of these biosensors highly depends upon the quality of TMDC material, as well as the orientation of receptors on their surfaces. The uncontrolled orientation of receptors and screening issues due to crossing the Debye screening length while functionalizing TMDC materials is a big challenge in this field. To address these issues, we introduce a combination of high-quality monolayer WSe2 with our designed Pyrene-based receptor moiety for its ordered orientation onto the WSe2 FET biosensor. A monolayer WSe2 sheet is utilized to fabricate an ideal FET for biosensing applications, which is characterized via Raman spectroscopy, atomic force microscopy, and electrical prob station. Our construct can sensitively detect our target protein (streptavidin) with 1 pM limit of detection within a short span of 2 min, through a one-step functionalizing process. In addition to having this ultra-fast response and high sensitivity, our biosensor can be a reliable platform for point-of-care-based diagnosis.

5.
Nano Converg ; 9(1): 4, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35024976

RESUMO

Several phenomena occurring throughout the life of living things start and end with proteins. Various proteins form one complex structure to control detailed reactions. In contrast, one protein forms various structures and implements other biological phenomena depending on the situation. The basic principle that forms these hierarchical structures is protein self-assembly. A single building block is sufficient to create homogeneous structures with complex shapes, such as rings, filaments, or containers. These assemblies are widely used in biology as they enable multivalent binding, ultra-sensitive regulation, and compartmentalization. Moreover, with advances in the computational design of protein folding and protein-protein interfaces, considerable progress has recently been made in the de novo design of protein assemblies. Our review presents a description of the components of supramolecular protein assembly and their application in understanding biological phenomena to therapeutics.

6.
Materials (Basel) ; 14(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34885529

RESUMO

Due to the vulnerability of organic optoelectronic devices to moisture and oxygen, thin-film moisture barriers have played a critical role in improving the lifetime of the devices. Here, we propose a hexagonal boron nitride (hBN) embedded Al2O3 thin film as a flexible moisture barrier. After layer-by-layer (LBL) staking of polymer and hBN flake composite layer, Al2O3 was deposited on the nano-laminate template by spatial plasma atomic layer deposition (PEALD). Because the hBN flakes in Al2O3 thin film increase the diffusion path of moisture, the composite layer has a low water vapor transmission ratio (WVTR) value of 1.8 × 10-4 g/m2 day. Furthermore, as embedded hBN flakes restrict crack propagation, the composite film exhibits high mechanical stability in repeated 3 mm bending radius fatigue tests.

7.
Materials (Basel) ; 14(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072492

RESUMO

The sp2-rich hydrogenated amorphous carbon (a-C:H) is widely adopted as hard masks in semiconductor-device fabrication processes. The ion-enhanced etch characteristics of sp2-rich a-C:H films on ion density and ion energy were investigated in CF4 plasmas and O2 plasmas in this work. The etch rate of sp2-rich a-C:H films in O2 plasmas increased linearly with ion density when no bias power was applied, while the fluorocarbon deposition was observed in CF4 plasmas instead of etching without bias power. The etch rate was found to be dependent on the half-order curve of ion energy in both CF4 plasmas and O2 plasmas when bias power was applied. An ion-enhanced etching model was suggested to fit the etch rates of a-C:H in CF4 plasmas and O2 plasmas. Then, the etch yield and the threshold energy for etching were determined based on this model from experimental etch rates in CF4 plasma and O2 plasma. The etch yield of 3.45 was observed in CF4 plasmas, while 12.3 was obtained in O2 plasmas, owing to the high reactivity of O radicals with carbon atoms. The threshold energy of 12 eV for a-C:H etching was obtained in O2 plasmas, while the high threshold energy of 156 eV was observed in CF4 plasmas. This high threshold energy is attributed to the formation of a fluorocarbon layer that protects the a-C:H films from ion-enhanced etching.

8.
Aquat Toxicol ; 237: 105900, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34166955

RESUMO

Globally, perovskite solar cells (PSCs) represent a third-generation photovoltaic technology that is being increasingly implemented and commercialized. However, the biological impacts of leachates from PSCs are poorly understood. Therefore, the aim of this study was to investigate the ecotoxicity of PSC leachates compared with that of commercial Si-based solar cell (SBSC) leachates. We performed leaching assessments and aquatic bioassays using internationally recommended test species and measured and compared the ecotoxicity of PSC and SBSC leachates. As a result of the leaching analyses, Si, Pb, and Al were found to be the most leached elements from broken PSCs and SBSCs. The bioassays indicated that polycrystalline SBSC (p-Si) and monocrystalline SBSC (m-Si) leachates were more toxic to fish embryos than the PSC leachates and that water fleas were sensitive to m-Si leachates, but less sensitive to PSC and p-Si leachates. In addition, principle component analyses indicated that the ecotoxicity of solar cell leachates was related to either the Pb or Si content. This is the first comparative study of the potential ecotoxicity of PSC and SBSC leachates in aquatic ecosystems, and the results of which can be used in the environmentally safe commercialization of solar cells.


Assuntos
Ecossistema , Poluentes Químicos da Água , Animais , Compostos de Cálcio , Óxidos , Silício , Titânio , Poluentes Químicos da Água/toxicidade
9.
ACS Nano ; 15(7): 11276-11284, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34184867

RESUMO

The synthesis of uniform low-defect graphene on a catalytic metal substrate is getting closer to the industrial level. However, its practical application is still challenging due to the lack of an appropriate method for its scalable damage-free transfer to a device substrate. Here, an efficient approach for a defect-free, etchant-free, wrinkle-free, and large-area graphene transfer is demonstrated by exploiting a multifunctional viscoelastic polymer gel as a simultaneous shock-free adhesive and dopant layer. Initially, an amine-rich polymer solution in its liquid form allows for conformal coating on a graphene layer grown on a Cu substrate. The subsequent thermally cured soft gel enables the shock-free and wrinkle-free direct mechanical exfoliation of graphene from a substrate due to its strong charge-transfer interaction with graphene and excellent shock absorption. The adhesive gel with a high optical transparency works as an electron doping layer toward graphene, which exhibits significantly reduced sheet resistances without optical transmittance loss. Lastly, the transferred graphene layer shows high mechanical and chemical stabilities under the repeated bending test and exposure to various solvents. This gel-assisted mechanical transfer method can be a solution to connect the missing part between large-scale graphene synthesis and next-generation electronics and optoelectronic applications.

10.
Opt Lett ; 46(6): 1434-1437, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720218

RESUMO

In this Letter, the surface hydrophilicity of the quantum dot (QD) emitting layer (EML) was modified via a ligand exchange to prevent QD EML damage upon hole transport layer (HTL) deposition for all-solution-processed inverted QD-light-emitting diodes (QLEDs). The conventional hydrophobic oleic acid ligand (OA-QDs) was partially replaced with a hydrophilic 6-mercaptohexanol (OH-QDs) through a one-pot ligand exchange. Owing to this replacement, the contact angle of a water droplet on the OH-QD films was reduced to 71.7° from 89.5° on the OA-QD films, indicating the conversion to hydrophilic hydroxyl ligands. The OH-QD EML maintained its integrity without any noticeable damage, even after HTL deposition, enabling all-solution processing for inverted QLEDs with well-organized multilayers. Inverted QLEDs with the OH-QD EMLs were compared with those with OA-QD EMLs; the maximum current efficiency of the device with the OH-QD EML significantly improved to 39.0 cd A-1 from 5.3 cd A-1, and the peak external quantum efficiency improved to 9.3% from 1.2%, which is a seven-fold increase over the OA-QD device. This approach is believed to be effective for forming solid QD films with resistance to chlorobenzene, a representative HTL solvent, and consequently contributes to high-efficiency all-solution-processed inverted QLEDs.

11.
Opt Express ; 28(23): 33971-33981, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182875

RESUMO

Inverted quantum dot light-emitting diodes (QLEDs) were fabricated through all-solution processing by sandwiching quantum dot (QD) emitting layers (EMLs) between dual polyethylenimine-ethoxylated (PEIE) layers. First, a PEIE layer as EML protecting layer (EPL) was formed on a QD EML to protect the EML from the hole transport layer (HTL) solvents and to facilitate the formation of a well-organized structure in the all-solution-processed inverted QLEDs. Second, another PEIE layer was introduced as an electron-blocking layer (EBL) on the zinc oxide (ZnO) electron transport layer (ETL) and effectively suppressed the excessive electron injection to the QD EML, thereby enhancing device efficiency.

12.
Nanomaterials (Basel) ; 10(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143226

RESUMO

The development of blue-emissive InP quantum dots (QDs) still lags behind that of the red and green QDs because of the difficulty in controlling the reactivity of the small InP core. In this study, the reaction kinetics of the ZnS shell was controlled by varying the length of the hydrocarbon chain in alkanethiols for the synthesis of the small InP core. The reactive alkanethiol with a short hydrocarbon chain forms the ZnS shell rapidly and prevents the growth of the InP core, thus reducing the emission wavelength. In addition, the length of the hydrocarbon chain in the fatty acid was varied to reduce the nucleation kinetics of the core. The fatty acid with a long hydrocarbon chain exhibited a long emission wavelength as a result of the rapid nucleation and growth, due to the insufficient In-P-Zn complex by the steric effect. Blue-emissive InP/GaP/ZnS QDs were synthesized with hexanethiol and lauryl acid, exhibiting a photoluminescence (PL) peak of 485 nm with a full width at half-maximum of 52 nm and a photoluminescence quantum yield of 45%. The all-solution processed quantum dot light-emitting diodes were fabricated by employing the aforementioned blue-emissive QDs as an emitting layer, and the resulting device exhibited a peak luminance of 1045 cd/m2, a current efficiency of 3.6 cd/A, and an external quantum efficiency of 1.0%.

13.
Opt Lett ; 45(20): 5800-5803, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057288

RESUMO

In this Letter, red-emitting multi-shelled indium phosphide (InP) quantum dots (QDs) were synthesized using the safe phosphorus precursor tris(dimethylamino)phosphine ((DMA)3P). The long-chain ligands of oleylamine (OAm) in the (DMA)3P phosphide source-based InP QDs were partially exchanged with short-chain ligands of phenethylamine (PEA) in the core formation process, and the resulting InP QDs were applied to quantum dot light-emitting diodes (QLEDs). The short-chain ligands of PEA with the π-conjugated benzene ring improved the charge transport and electrical conduction of the QLEDs with (DMA)3P phosphide source-based InP QDs. The PEA-engineering of InP QDs improved their maximum quantum yield from 71% to 85.5% with the full-width at half-maximum of 62 nm. Furthermore, the maximum external quantum efficiency of QLEDs with the PEA-engineered InP QDs improved from 1.9% to 3.5%, and their maximum power efficiency increased from 2.8 to 6.0 lm/W. This Letter demonstrates that engineering the core formation process with the short-chain ligands of PEA provides an efficient and facile way to improve the charge transport and electrical conduction in (DMA)3P phosphide source-based InP QLEDs for electroluminescent devices.

14.
Chem Commun (Camb) ; 55(88): 13299-13302, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31626256

RESUMO

Tailored-ZnMgO layers result in green-emitting InP based quantum dot light emitting diodes (QLEDs) with a maximum luminance of 13 900 cd m-2 and an external quantum efficiency (EQE) of 13.6%. This is the first report of green-emitting InP based QLEDs that exceed an EQE of 10% and a luminance of 13 000 cd m-2.

15.
Opt Express ; 27(16): A1287-A1296, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510582

RESUMO

A 2,3,4,6-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane (F4-TCNQ) doping interlayer was developed to improve charge imbalance and the efficiency in indium phosphide (InP)-based quantum dot light-emitting diodes (QLEDs). The doping layer was coated between a hole injecting layer (HIL) and a hole transport layer (HTL) and successfully diffused with thermal annealing. This doping reduces the hole injection barrier and improves the charge balance of InP-based QLEDs, resulting in enhancement of an external quantum efficiency (EQE) of 3.78% (up from 1.6%) and a power efficiency of 6.41 lm/W (up from 2.77 lm/W). This work shows that F4-TCNQ interlayer doping into both HIL and HTL facilitates hole injection and can provide an efficient solution of improving charge balance in QLED for the device efficiency.

16.
Opt Express ; 27(14): 20037-20046, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31503755

RESUMO

Quantum-dot (QD) ligands were modified and hydrosilylated with a siloxane matrix to improve the quantum efficiency and stability of the QDs. Conventional oleic acid (OA) ligands were exchanged with vinyl ligands without any reduction in the quantum yield. After ligand modification, hydrosilylation was induced between the vinyl ligands on the QDs (vinyl QDs) and a siloxane matrix, resulting in a uniform QD dispersion in the matrix. The hydrosilylated QDs in siloxane showed 23% higher photoluminescence intensity than OA QDs blended in siloxane after storage for 30 days at 85 °C under 85% relative humidity. The QDs also showed 22.3% higher UV/thermal stability than OA QDs in siloxane after 29 h under a high LED photon flux. This study demonstrates that the chemical reaction of QD ligands with polymer matrices can improve the QDs' dispersion and stability.

17.
ACS Appl Mater Interfaces ; 11(29): 26333-26338, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31286764

RESUMO

Patchable electrodes are attractive for applications in optoelectronic devices because of their easy and reliable processability. However, development of reliable patchable transparent electrodes (TEs) with high optoelectronic performance is challenging; till now, optoelectronic devices fabricated with patchable TEs have been exhibiting limited performance. In this study, Ag nanowire (AgNW)/poly(methyl methacrylate) (PMMA) patchable TEs are developed and the highly efficient transparent quantum dot light-emitting diodes (QLEDs) using the patchable TEs are fabricated. AgNWs with optimized optoelectronic properties (figure of merit ≈ 3.3 × 10-2) are coated by an ultrathin PMMA nanolayer and transferred to thermal release tapes that enable physical attachment of TEs on the QLEDs without a significant damage to the adjacent active layer. The transparent QLEDs using patchable transparent top electrodes display excellent performance, with the maximum total luminance and current efficiency of 27 310 cd·m-2 and 45.99 cd·A-1, respectively. Fabricated by all-solution-based processes, these QLEDs exhibit the best performance to date among devices adopting patchable top electrodes.

18.
Polymers (Basel) ; 11(5)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109088

RESUMO

The reactive acrylate-terminated CdZnSeS/ZnS quantum dots (QDs) were designed and prepared by the effective synthetic route to bond with a siloxane matrix via hydrosilylation. The conventional QD with oleic acid ligands does not have any reactivity, so the QDs were functionalized to assign reactivity for the QDs by the ligand modification of two step reactions. The oleic acid of the QDs was exchanged for hydroxyl-terminated ligands as an intermediate product by one-pot reaction. The hydroxyl-terminated QDs and acrylate-containing isocyanates were combined by nucleophilic addition reaction with forming urethane bonds and terminal acrylate groups. No degradation in quantum yield was observed after ligand exchange, nor following the nucleophilic addition reaction. The modification reactions of ligands were quantitatively controlled and their molecular structures were precisely confirmed by FT-IR and 1H-NMR. The QDs with acrylate ligands were then reacted with hydride-terminated polydimethylsiloxane (H-PDMS) to form a QD-siloxane matrix by thermal curing via hydro-silylation for the first time. The covalent bonding between the QDs and the siloxane matrix led to improvements in the stability against oxygen and moisture. Stability at 85 °C and 85% relative humidity (RH) were both improved by 22% for the QD-connected siloxane QD films compared with the corresponding values for conventional QD-embedded poly(methylmethacrylate) (PMMA) films. The photo-stability of the QD film after 26 h under a blue light-emitting diode (LED) was also improved by 45% in comparison with those of conventional QD-embedded PMMA films.

19.
ACS Appl Mater Interfaces ; 11(10): 10237-10243, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30794749

RESUMO

Vertically oriented graphene (VG) with three-dimensional architecture has been proved to exhibit unique properties, and its particular morphology has been realized by researchers to be crucial for its performance in practical applications. In this study, we investigated the morphology evolution of VG films synthesized by the plasma-enhanced chemical vapor deposition process, including porous graphene film, graphene wall, and graphene forest. This study reveals that the morphology of VG is controlled by a combination of the deposition and etching effects and tailored by the growth conditions, such as plasma source power and growth time and temperature. The plasma source power relates to the number of branches of VG, and the growth temperature relates to the thickness of each VG flake, whereas the growth time determines the height of VG. Finally, the electrochemical properties of VG films along with morphology evolution are investigated by fabricating as VG-based supercapacitor electrodes.

20.
Adv Mater ; 31(34): e1804294, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30650209

RESUMO

Quantum dots (QDs) are being highlighted in display applications for their excellent optical properties, including tunable bandgaps, narrow emission bandwidth, and high efficiency. However, issues with their stability must be overcome to achieve the next level of development. QDs are utilized in display applications for their photoluminescence (PL) and electroluminescence. The PL characteristics of QDs are applied to display or lighting applications in the form of color-conversion QD films, and the electroluminescence of QDs is utilized in quantum dot light-emitting diodes (QLEDs). Studies on the stability of QDs and QD devices in display applications are reviewed herein. QDs can be degraded by oxygen, water, thermal heating, and UV exposure. Various approaches have been developed to protect QDs from degradation by controlling the composition of their shells and ligands. Phosphorescent QDs have been protected by bulky ligands, physical incorporation in polymer matrices, and covalent bonding with polymer matrices. The stability of electroluminescent QLEDs can be enhanced by using inorganic charge transport layers and by improving charge balance. As understanding of the degradation mechanisms of QDs increases and more stable QDs and display devices are developed, QDs are expected to play critical roles in advanced display applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...