Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 19(7): 2990-2999, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30043191

RESUMO

To overcome the poor dissolution of telmisartan (TMS) at weak acidic pH, amorphous alkalinized TMS (AAT) was prepared by introducing sodium hydroxide as a selective alkalizer. AAT-containing polymeric solid dispersions were prepared by a solvent evaporation method; these solid dispersions were AAT-PEG, AAT-PVP, AAT-POL, and AAT-SOL for the polymers of PEG 6000, PVP K30, Poloxamer 407, and Soluplus, respectively. The characteristics of the different formulations were observed by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. To compare the supersaturation behavior, a dissolution test was performed at 37 ± 0.5 °C either in 900 ml (plain condition) or 500 ml (limited condition) of pH 6.8-simulated intestinal fluid used as a medium. AAT-SOL exhibited enhanced dissolution, indicating the probability of extended supersaturation in the limited condition. AAT-SOL was further formulated into a tablet by introducing other excipients, Vivapur 105 and Croscarmellose, as a binder and superdisintegrant, respectively, using a direct compression method. The selected AAT-SOL tablet was superior to Micardis (the reference product) in the aspect of supersaturation maintenance during dissolution in the limited condition, suggesting that it is a promising candidate for practical development that can replace the commercial product in the future.


Assuntos
Antiácidos/química , Composição de Medicamentos/métodos , Telmisartan/química , Antiácidos/metabolismo , Anti-Hipertensivos/química , Anti-Hipertensivos/metabolismo , Varredura Diferencial de Calorimetria/métodos , Excipientes/química , Excipientes/metabolismo , Microscopia Eletrônica de Varredura/métodos , Polímeros/química , Polímeros/metabolismo , Solventes/química , Solventes/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Comprimidos , Telmisartan/metabolismo , Difração de Raios X/métodos
2.
Oncotarget ; 8(55): 94297-94316, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212229

RESUMO

In order to improve the dissolution and oral bioavailability of valsartan (VST), and reduce the required volume for treatment, we previously formulated a supersaturable self-microemulsifying drug delivery system (SuSMEDDS) composed of VST (80 mg), Capmul® MCM (13.2 mg), Tween® 80 (59.2 mg), Transcutol® P (59.2 mg), and Poloxamer 407 (13.2 mg). In the present study, by using Florite® PS-10 (119.1 mg) and Vivapur® 105 (105.6 mg) as solid carriers, VST-loaded solidified SuSMEDDS (S-SuSMEDDS) granules were successfully developed, which possessed good flow properties and rapid drug dissolution. By introducing croscarmellose sodium (31 mg) as a superdisintegrant, S-SuSMEDDS tablets were also successfully formulated, which showed fast disintegration and high dissolution efficiency. Preparation of granules and tablets was successfully optimized using D-optimal mixture design and 3-level factorial design, respectively, resulting in percentage prediction errors of <10%. In pharmacokinetic studies in rats, the relative bioavailability of the optimized granules was 107% and 222% of values obtained for SuSMEDDS and Diovan® powder, respectively. Therefore, we conclude that novel S-SuSMEDDS formulations offer great potential for developing solid dosage forms of a liquefied formulation such as SuSMEDDS, while improving oral absorption of drugs with poor water solubility.

3.
Int J Nanomedicine ; 12: 3533-3545, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507434

RESUMO

A novel, supersaturable self-microemulsifying drug delivery system (S-SMEDDS) was successfully formulated to enhance the dissolution and oral absorption of valsartan (VST), a poorly water-soluble drug, while reducing the total quantity for administration. Poloxamer 407 is a selectable, supersaturating agent for VST-containing SMEDDS composed of 10% Capmul® MCM, 45% Tween® 20, and 45% Transcutol® P. The amounts of SMEDDS and Poloxamer 407 were chosen as formulation variables for a 3-level factorial design. Further optimization was established by weighting different levels of importance on response variables for dissolution and total quantity, resulting in an optimal S-SMEDDS in large quantity (S-SMEDDS_LQ; 352 mg in total) and S-SMEDDS in reduced quantity (S-SMEDDS_RQ; 144.6 mg in total). Good agreement was observed between predicted and experimental values for response variables. Consequently, compared with VST powder or suspension and SMEDDS, both S-SMEDDS_LQ and S-SMEDDS_RQ showed excellent in vitro dissolution and in vivo oral bioavailability in rats. The magnitude of dissolution and absorption-enhancing capacities using quantity-based comparisons was in the order S-SMEDDS_RQ > S-SMEDDS_LQ > SMEDDS > VST powder or suspension. Thus, we concluded that, in terms of developing an effective SMEDDS preparation with minimal total quantity, S-SMEDDS_RQ is a promising candidate.


Assuntos
Emulsões/administração & dosagem , Valsartana/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Caprilatos/química , Sistemas de Liberação de Medicamentos/métodos , Emulsões/química , Emulsões/farmacocinética , Etilenoglicóis/química , Glicerídeos/química , Masculino , Polímeros , Polissorbatos/química , Ratos Sprague-Dawley , Solubilidade , Valsartana/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...