Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(2): 233-244, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511219

RESUMO

Bicontinuous structures promise applications in a broad range of research fields, such as energy storage, membrane science, and biomaterials. Kinetically arrested spinodal decomposition is found responsible for stabilizing such structures in different types of materials. A recently developed solvent segregation driven gel (SeedGel) is demonstrated to realize bicontinuous channels thermoreversibly with tunable domain sizes by trapping nanoparticles in a particle domain. As the mechanical properties of SeedGel are very important for its future applications, a model system is characterized by temperature-dependent rheology. The storage modulus shows excellent thermo-reproducibility and interesting temperature dependence with the maximum storage modulus observed at an intermediate temperature range (around 28 °C). SANS measurements are conducted at different temperatures to identify the macroscopic solvent phase separation during the gelation transition, and solvent exchange between solvent and particle domains that is responsible for this behavior. The long-time dynamics of the gel is further studied by X-ray Photon Correlation Spectroscopy (XPCS). The results indicate that particles in the particle domain are in a glassy state and their long-time dynamics are strongly correlated with the temperature dependence of the storage modulus.

2.
ACS Appl Mater Interfaces ; 14(11): 13601-13610, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35255687

RESUMO

Graphene fiber is emerging as a new class of carbon-based fiber with distinctive material properties particularly useful for electroconductive components for wearable devices. Presently, stretchable and bendable graphene fibers are principally employing soft dielectric additives, such as polymers, which can significantly deteriorate the genuine electrical properties of pristine graphene-based structures. We report molecular-level lubricating nanodiamonds as an effective physical property modifier to improve the mechanical flexibility of graphene fibers by relieving the tight interlayer stacking among graphene sheets. Nanoscale-sized NDs effectively increase the tensile strain and bending strain of graphene/nanodiamond composite fibers while maintaining the genuine electrical conductivity of pristine graphene-based fibers. The molecular-level lubricating mechanism is elucidated by friction force microscopy on the nanoscale as well as by shear stress measurement on the macroscopic scale. The resultant highly bendable graphene/nanodiamond composite fiber is successfully weaved into all graphene fiber-based textiles and wearable Joule heaters, proposing the potential for reliable wearable applications.

3.
Soft Matter ; 18(1): 53-61, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34843612

RESUMO

A high internal phase emulsion (HIPE), which has a volume fraction of dispersed phase of over 74%, shows a solid-like property because of concentrated polyhedral droplets. Although many studies have proposed theoretical and empirical models to explain the rheological properties of HIPEs, most of them are only limited to the emulsions stabilized by surfactants. In the case of high internal phase Pickering emulsions (HIPPEs), much greater values of elastic modulus have been reported, compared to those of surfactant-stabilized HIPEs, but so far, there have been no clear explanations for this. In this study, we investigate how colloidal particles attribute to the significantly high elasticity of HIPPEs, specifically considering two different contributions, namely, interfacial rheological properties and bulk rheological properties. Our results reveal that the flocculated structures of colloidal particles that possess a significant elasticity can be interconnected between dispersed droplets. Furthermore, this elastic structure is a crucial factor in the high elasticity of HIPPEs, which is also supported by a simple theoretical model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...