Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608218

RESUMO

Campylobacter jejuni represents one of the leading causes of bacterial gastroenteritis in humans and is primarily linked to chicken meat contamination. In the present study, we analyzed the virulence and survival genes, antimicrobial resistance, and the clonal distribution of 50 C. jejuni isolates obtained from various sources in 14 chicken slaughterhouses across 8 provinces in South Korea from 2019 to 2022. Furthermore, we determined their genetic relatedness to human-derived isolates registered in PubMLST using multilocus sequence typing (MLST). All isolates harbored various virulence and survival genes (flhA, cadF, cdtA, cdtC, cmeA, and sodB) out of 17 tested genes, as confirmed via polymerase chain reaction analysis. Adherence factor gene virB11 was not detected in any isolate. All isolates harbored 12 or more virulence and survival genes. Antimicrobial susceptibility testing indicated that ciprofloxacin resistance was the most prevalent (84.0%), followed by nalidixic acid (82.0%) and tetracycline (52.0%) resistance. MLST analysis of the isolates revealed 18 sequence types (STs), including four new ones. Overlapping STs between chicken slaughterhouse and human-derived isolates included ST42, ST45, ST50, ST137, ST354, and ST464. Our study identified 11 clonal complexes (CCs), with CC-21 being the most prevalent in both human and chicken slaughterhouse-derived isolates. This study provides comprehensive insights into recent C. jejuni isolates from chicken slaughterhouses, including data on quinolone resistance and virulence factors. The MLST-based genetic relatedness between isolates from humans and chicken slaughterhouses in this study suggests the potential of C. jejuni transmission from chickens to humans through the food chain. This study suggests the need for improved management practices in chicken slaughterhouses to reduce the transmission of chicken slaughterhouse-derived C. jejuni to humans.

2.
Front Microbiol ; 14: 1282961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098672

RESUMO

Listeria monocytogenes is the etiologic agent of listeriosis, a foodborne disease that poses a threat to public health globally. Chicken meat exhibits heightened susceptibility to L. monocytogenes contamination during butchery. The persistence of this pathogen in the slaughterhouse environment enables recurring contamination of meat products. This study aimed at identifying the sources and transmission routes of L. monocytogenes contamination within an abattoir where it was consistently detected for three consecutive years (2019-2021). Furthermore, the environmental factors aiding contamination along chicken processing lines were determined by surveying the microbiome within the facility. Samples collected in 2019 to 2021 were subjected to culture-dependent analysis to assess the prevalence, serotypes, and multi-locus sequence typing (MLST) of L. monocytogenes. Additionally, the specimens collected in 2021 underwent culture-independent analysis via real-time quantitative polymerase chain reaction (qPCR) and 16S rRNA gene amplicon sequencing to identify the contamination sources and characterize the entire microbial community within the slaughterhouse. L. monocytogenes was isolated only from the clean zone, where the final slaughtering stage occurs. Most strains isolated from the final carcasses showed the same genetic cluster as the isolate in the chilling water and were assigned to MLST profile ST3. Culture-independent qPCR confirmed L. monocytogenes contamination in all samples, excluding post-scalding carcasses, prewashed post-evisceration carcasses, and the bleeding areas. Consequently, qPCR enabled more comprehensive identification of L. monocytogenes contamination points than culture-dependent approaches. Moreover, 16S rRNA gene amplicon sequencing demonstrated that psychro-tolerant and spoilage-related bacteria with L. monocytogenes-like attributes exhibited enhanced viability in the clean zone and immersion-chilling water. Metagenomics-based source tracking analysis further revealed that the shackles and chilling waters represent predominant sources of cross-contamination between different slaughterhouse zones, whereas the grading and packaging workstations and chilling water in the clean zone were deemed crucial sources affecting final carcass contamination. Collectively, these findings demonstrate through culture-dependent and -independent methods that L. monocytogenes spreads along the slaughter line, contaminating the slaughterhouse. Moreover, by investigating changes in microbial community and bacterial flow along the slaughter line within the facility, the sources influencing carcass contamination can be effectively traced.

3.
Antibiotics (Basel) ; 12(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37237780

RESUMO

A safe and effective method for eradicating poultry red mite (PRM; Dermanyssus gallinae) is urgently needed, as existing treatments show a low efficacy or hazardous effects on chickens. We evaluated the efficacy of a combined treatment with ivermectin and allicin (IA) against PRMs in chickens and drug residues in non-target samples. The efficiency of PRM eradication by IA was compared with those of natural acaricides in vitro. Ivermectin (0.25 mg/mL) + allicin (1 mg/mL) (IA compound) was sprayed on isolator housing hens with PRMs. The PRM mortality rate, clinical symptoms, and ivermectin residue in hens were analyzed. IA showed the highest PRM-eradication efficacy among all tested compounds in vitro. The insecticidal rates of IA were 98.7%, 98.4%, 99.4%, and 99.9% at 7, 14, 21, and 28 days of treatment, respectively. After inoculating PRMs, hypersensitivity, itching, and a pale-colored comb were observed in control animals, which were absent in treated hens. No clinical symptoms from IA and ivermectin residues were found in hens. IA effectively exterminated PRMs, demonstrating its potential for industrial use to treat PRMs.

4.
J Vet Sci ; 19(2): 313-317, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29284213

RESUMO

Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging pathogen in animals and humans. Herein, we describe two clinical swine cases of SDSE infection presenting with lameness, neurological signs, or sudden death. Pathological examination indicated suppurative arthritis, encephalitis, and multifocal abscesses in kidney and heart. The ß-hemolytic colonies obtained from joint samples of each case were identified as SDSE. The two isolates had low minimum inhibitory concentrations for ß-lactams, and they presented the same virulence gene profile (slo-/sagA+/pSTKP8+). Molecular analysis by multilocus sequence typing identified the SDSE isolates from cases 1 and 2 as sequence types 315 and 252, respectively.


Assuntos
Animais Recém-Nascidos/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus , Doenças dos Suínos/microbiologia , Animais , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Tipagem de Sequências Multilocus , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus/genética , Suínos/microbiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/patologia
5.
Vet Parasitol ; 229: 81-89, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27809984

RESUMO

We assessed the prevalence and performed molecular analysis of Cryptosporidium spp. in diarrheal feces of calves in Korea. Diarrheal fecal samples were collected from 951 young calves (<3months) on 425 farms. Cryptosporidium prevalence was assessed by PCR and ELISA, and molecular characterization was performed by targeting the 18S rRNA, heat-shock protein 70 (hsp70), and glycoprotein 60 (gp60) genes. Data were analyzed according to the sex, type of cattle, region, season, and type of diarrhea. PCR analysis revealed Cryptosporidium spp. in 9.9% (94/951) of diarrheal fecal samples. C. parvum and C. bovis/ryanae were present in 6.1% (58/951) and 4.1% (39/951) of diarrheal fecal samples, respectively. In addition, ELISA showed positive results for C. parvum in 9.7% (92/951) samples. Statistical analysis of the PCR and ELISA results revealed a lower prevalence of C. parvum in the hemorrhagic diarrheal samples (P<0.05). For C. bovis/ryanae, seasonality and high prevalence in hemorrhagic diarrhea were observed (P<0.05). Of the 951 samples tested for C. parvum, 903 samples showed agreement with a κ value of 0.65, indicating good agreement between the two tests. Although C. bovis and C. ryanae share highly similar 18S rRNA sequences, PCR based on hsp70 successfully distinguished C. bovis from C. ryanae. Sequence analysis of gp60 revealed that C. parvum belonged to the IIa families and was further subtyped as IIaA18G3R1 and IIaA16G3R1, which have not been previously reported in Asia. These findings indicate that Cryptosporidium spp. play an important role in diarrhea in young calves in Korea. Considering the zoonotic significance of C. parvum IIa subtype and dense rearing system of cattle in Korea, prevention and continuous monitoring of Cryptosporidium are required.


Assuntos
Doenças dos Bovinos/parasitologia , Criptosporidiose/parasitologia , Cryptosporidium/classificação , Diarreia/veterinária , Tipagem de Sequências Multilocus/veterinária , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Criptosporidiose/epidemiologia , Diarreia/parasitologia , República da Coreia/epidemiologia
6.
J Food Prot ; 79(11): 1884-1890, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28221916

RESUMO

This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:- (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes blaTEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Salmonella typhimurium/isolamento & purificação , Animais , Antibacterianos/farmacologia , Anti-Infecciosos , Eletroforese em Gel de Campo Pulsado , Testes de Sensibilidade Microbiana , República da Coreia , Salmonelose Animal , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...