Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930332

RESUMO

Oxygen reduction reaction (ORR) and oxygen evolutionc reaction (OER) are important chemical reactions for a rechargeable lithium-oxygen battery (LOB). Recently, high-entropy alloys and oxides have attracted much attention because they showed good electrocatalytic performance for oxygen evolution reaction (OER) and/or oxygen reduction reaction (ORR). In this study, we aimed to synthesize and characterize CoSn(OH)6 and two types of high-entropy perovskite hydroxides, that is, (Co0.2Cu0.2Fe0.2Mn0.2Mg0.2)Sn(OH)6 (CCFMMSOH) and (Co0.2Cu0.2Fe0.2Mn0.2Ni0.2)Sn(OH)6 (CCFMNSOH). TEM observation and XRD measurements revealed that the high-entropy hydroxides CCFMMSOH and CCFMNSOH had cubic crystals with sides of approximately 150-200 nm and crystal structures similar to those of perovskite-type CSOH. LSV measurement results showed that the high-entropy hydroxides CCFMMSOH and CCFMNSOH showed bifunctional catalytic functions for the ORR and OER. CCFMNSOH showed better catalytic performance than CCFMMSOH.

2.
Materials (Basel) ; 17(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255488

RESUMO

Lithium-air batteries (LABs) have a theoretically high energy density. However, LABs have some issues, such as low energy efficiency, short life cycle, and high overpotential in charge-discharge cycles. To solve these issues electrocatalytic materials were developed for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which significantly affect battery performance. In this study, we aimed to synthesize electrocatalytic N-doped carbon-based composite materials with solution plasma (SP) using Co or Ni as electrodes from organic solvents containing cup-stacked carbon nanotubes (CSCNTs), iron (II) phthalocyanine (FePc), and N-nethyl-2-pyrrolidinone (NMP). The synthesized N-doped carbon-based composite materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). TEM observation and XPS measurements revealed that the synthesized carbon materials contained elemental N, Fe, and electrode-derived Co or Ni, leading to the successful synthesis of N-doped carbon-based composite materials. The electrocatalytic activity for ORR of the synthesized carbon-based composite materials was also evaluated using electrochemical measurements. The electrochemical measurements demonstrated that the electrocatalytic performance for ORR of N-doped carbon-based composite material including Fe and Co showed superiority to that of N-doped carbon-based composite material including Fe and Ni. The difference in the electrocatalytic performance for ORR is discussed regarding the difference in the specific surface area and the presence ratio of chemical bonding species.

3.
RSC Adv ; 11(43): 26785-26790, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35480000

RESUMO

ZnO nano-bullets were synthesized using solution plasma from only Zn electrode in water without any chemical agents. In this sustainable synthesis system, the rapid quenching reaction at the interface between the plasma/liquid phases facilitates the fast formation of nano-sized materials. The coil-to-pin type electrode geometry, which overcomes the discharge interruption owing to the electrode gap broadening of the typical pin-to-pin type enables the synthesis of numerous nanomaterials through a stable discharge for 1 h. The as-prepared samples exhibited a high crystalline ZnO structure without post calcination, and the length and width were 71.8 and 29.1 nm, respectively. The main exposed facet of ZnO nano-bullets was the (100) crystal facet, but interestingly, the (101) facet was confirmed at the inclined surfaces in the edges. The (101) crystal facet has an asymmetric Zn and O atom arrangement, and it could result in a focused electron density area with relatively high reactivity. Therefore, ZnO nano-bullets are promising materials for applications in advanced technologies.

4.
RSC Adv ; 10(60): 36627-36635, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35517970

RESUMO

Metal-carbon core-shell nanostructures have gained research interest due to their better performances in not only stability but also other properties, such as catalytic, optical, and electrical properties. However, they are limited by complicated synthesis approaches. Therefore, the development of a simple method for the synthesis of metal-carbon core-shell nanostructures is of great significance. In this work, a novel Cu-core encapsulated by a N-doped few-layer graphene shell was successfully synthesized in a one-pot in-liquid plasma discharge, so-called solution plasma (SP), to our knowledge for the first time. The synthesis was conducted at room temperature and atmospheric pressure by using a pair of copper electrodes submerged in a DMF solution as the precursor. The core-shell structure of the obtained products was confirmed by HR-TEM, while further insight information was explained from the results of XRD, Raman, and XPS measurements. The obtained Cu-core encapsulated by the N-doped few-layer graphene shell demonstrated relatively high stability in acid media, compared to the commercial bare Cu particles. Moreover, the stability was found to depend on the thickness of the N-doped few-layer graphene shell which can be tuned by adjusting the SP operating conditions.

5.
Nanomaterials (Basel) ; 9(12)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847179

RESUMO

The synthesis of carbon nanoparticles (Cn) and oxygen-doped nanocarbon (OCn) was successfully done through a one-step synthesis by the solution plasma process (SPP). The Cn and OCn were nitrogen-doped by nitridation under an ammonia atmosphere at 800 °C for 2 h to yield NCn and NOCn, respectively, for carbon dioxide (CO2) adsorption. The NOCn exhibited the highest specific surface area (~570 m2 g-1) and highest CO2 adsorption capacity (1.63 mmol g-1 at 25 °C) among the synthesized samples. The primary nitrogen species on the surface of NOCn were pyridinic-N and pyrrolic-N. The synergistic effect of microporosity and nitrogen functionality on the NOCn surface played an essential role in CO2 adsorption enhancement. From the thermodynamic viewpoint, the CO2 adsorption on NOCn was physisorption, exothermic, and spontaneous. The NOCn showed a more negative enthalpy of adsorption, indicating its stronger interaction for CO2 on the surface, and hence, the higher adsorption capacity. The CO2 adsorption on NOCn over the whole pressure range at 25-55 °C best fitted the Toth model, suggesting monolayer adsorption on the heterogeneous surface. In addition, NOCn expressed a higher selective CO2 adsorption than Cn and so was a good candidate for multicycle adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...