Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 227: 107234, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36375419

RESUMO

BACKGROUND AND OBJECTIVE: Hyperthyroidism, hypothyroidism, goiter and cancer are some of the dysfunctions that can occur concerning the thyroid, an important body homeostasis regulatory gland located in the cervical region. These disorders are mostly caused by changes in metabolism and can impair quality of life. This study presents a non-invasive approach that can detect changes in thyroid metabolism through the finite element analysis and medical images. The objective of this work was to develop a numerical model to represent the temperature distribution in the human neck with and without the presence of thyroid nodules. The patient-specific computational model for the case with thyroid nodules was calibrated with infrared thermography. METHODS: A three-dimensional geometrical model of the neck was constructed based on the segmentation of magnetic resonance (MR) images. The Finite Element Method (FEM) was used to simulate heat diffusion and convection in the cervical region. The infrared thermography image was used to calibrate the heat transfer constants to obtain the surface temperature of the human neck model containing the enlarged thyroid with nodules. Subsequently, another case for the entire neck with an abnormally large thyroid without the nodules was simulated using the calibrated physical constants. RESULTS: Results of the simulations with and without the presence of thyroid nodules were compared, showing the influence of the generation of heat from the nodules, allowing observation of the thermal differences on the cervical surface and at the thyroid itself. The model with nodules presented higher skin temperature distribution in the anterior triangle region when compared to the case without nodules. An average of 0.36∘C of absolute error and 1% of relative error was obtained for the calibration between the simulated model and the infrared image. CONCLUSIONS: This research consists of an innovative approach by comparing the results obtained via FEM simulation and the corresponding infrared image of the same neck region under study. Since there are great variability and uncertainties in the determination of the thermal constants, we applied a procedure for calibrating them based on a patient-specific case, which involves a multinodular goiter accompanied by hyperthyroidism. This proof-of-concept study allows the creation of comparative scenarios between the FEM simulations and the corresponding infrared image. Thus, it is expected that, in the future, this approach could be used to include the effect of drugs in the treatment strategies of thyroid diseases and disorders.


Assuntos
Bócio , Hipertireoidismo , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Análise de Elementos Finitos , Temperatura , Qualidade de Vida
2.
Artigo em Inglês | MEDLINE | ID: mdl-25571260

RESUMO

Three-dimensional medical image reconstruction using different images modalities require registration techniques that are, in general, based on the stacking of 2D MRI/CT images slices. In this way, the integration of two different imaging modalities: anatomical (MRI/CT) and physiological information (infrared image), to generate a 3D thermal model, is a new methodology still under development. This paper presents a 3D THERMO interface that provides flexibility for the 3D visualization: it incorporates the DICOM parameters; different color scale palettes at the final 3D model; 3D visualization at different planes of sections; and a filtering option that provides better image visualization. To summarize, the 3D thermographc medical image visualization provides a realistic and precise medical tool. The merging of two different imaging modalities allows better quality and more fidelity, especially for medical applications in which the temperature changes are clinically significant.


Assuntos
Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Software , Termografia , Algoritmos , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...