Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Avian Pathol ; : 1-24, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922304

RESUMO

AbstractThe Avulavirus within the family Paramyxoviridae includes at least 22 different species, and is known to cause different types of infections and even be fatal in multiple avian species. There is limited knowledge of the genetic and biological information of Avulavirus species -2 to 22 in domestic and wild birds and the disease significance of these viruses in birds is not fully determined, although as many as 10 new distinct species have been identified from wild birds and domestic poultry around the world in the last decade. This study aimed to use PCR, virus isolation, and sequencing to genetically and biologically characterize Avian Orthoavulavirus 16 (AOAV-16) in wild birds and domestic poultry collected from different locations in China between 2014 and 2022. Of five isolated AOAV-16 strains (Y1 to Y5), only the Y4 strain had a hemagglutination (HA)-negative result. All of these isolates were low virulent viruses for chickens, except Y3 which was detected simultaneously with avian influenza virus (AIV) of H9N2 subtype. Furthermore, at least four different types of intergenic sequences (IGS) between the HN and L genes junction, and the recombination event as well as interspecific transmission by wild migratory birds, existed within the species AOAV-16. These findings and results of other reported AOAV-16 strains recommend strict control measures to limit contact between wild migratory birds and domestic poultry and imply potential threats to commercial poultry and even public health challenges worldwide.

2.
Viruses ; 14(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35632651

RESUMO

The highly virulent Newcastle disease virus (NDV) isolates typically result in severe systemic pathological changes and high mortality in Newcastle disease (ND) illness, whereas avirulent or low-virulence NDV strains can cause subclinical disease with no morbidity and even asymptomatic infections in birds. However, understanding the host's innate immune responses to infection with either a highly virulent strain or an avirulent strain, and how this response may contribute to severe pathological damages and even mortality upon infection with the highly virulent strain, remain limited. Therefore, the differences in epigenetic and pathogenesis mechanisms between the highly virulent and avirulent strains were explored, by transcriptional profiling of chicken embryonic visceral tissues (CEVT), infected with either the highly virulent NA-1 strain or the avirulent vaccine LaSota strain using RNA-seq. In our current paper, severe systemic pathological changes and high mortality were only observed in chicken embryos infected with the highly virulent NA-1 strains, although the propagation of viruses exhibited no differences between NA-1 and LaSota. Furthermore, virulent NA-1 infection caused intense innate immune responses and severe metabolic disorders in chicken EVT at 36 h post-infection (hpi), instead of 24 hpi, based on the bioinformatics analysis results for the differentially expressed genes (DEGs) between NA-1 and LaSota groups. Notably, an acute hyperinflammatory response, characterized by upregulated inflammatory cytokines, an uncontrolled host immune defense with dysregulated innate immune response-related signaling pathways, as well as severe metabolic disorders with the reorganization of host-cell metabolism were involved in the host defense response to the CEVT infected with the highly virulent NA-1 strain compared to the avirulent vaccine LaSota strain. Taken together, these results indicate that not only the host's uncontrolled immune response itself, but also the metabolic disorders with viruses hijacking host cell metabolism, may contribute to the pathogenesis of the highly virulent strain in ovo.


Assuntos
Doenças Metabólicas , Vírus não Classificados , Animais , Embrião de Galinha , Galinhas , Biologia Computacional , Vírus de DNA , Imunidade Inata , Vírus da Doença de Newcastle/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...