Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18913, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144613

RESUMO

Zoysia matrella [L.] Merr. is a widely cultivated warm-season turf grass in subtropical and tropical areas. Dwarf varieties of Z. matrella are attractive to growers because they often reduce lawn mowing frequencies. In this study, we describe a dwarf mutant of Z. matrella induced from the 60Co-γ-irradiated calluses. We conducted morphological test and physiological, biochemical and transcriptional analyses to reveal the dwarfing mechanism in the mutant. Phenotypically, the dwarf mutant showed shorter stems, wider leaves, lower canopy height, and a darker green color than the wild type (WT) control under the greenhouse conditions. Physiologically, we found that the phenotypic changes of the dwarf mutant were associated with the physiological responses in catalase, guaiacol peroxidase, superoxide dismutase, soluble protein, lignin, chlorophyll, and electric conductivity. Of the four endogenous hormones measured in leaves, both indole-3-acetic acid and abscisic acid contents were decreased in the mutant, whereas the contents of gibberellin and brassinosteroid showed no difference between the mutant and the WT control. A transcriptomic comparison between the dwarf mutant and the WT leaves revealed 360 differentially-expressed genes (DEGs), including 62 up-regulated and 298 down-regulated unigenes. The major DEGs related to auxin transportation (e.g., PIN-FORMED1) and cell wall development (i.e., CELLULOSE SYNTHASE1) and expansin homologous genes were all down-regulated, indicating their potential contribution to the phenotypic changes observed in the dwarf mutant. Overall, the results provide information to facilitate a better understanding of the dwarfing mechanism in grasses at physiological and transcript levels. In addition, the results suggest that manipulation of auxin biosynthetic pathway genes can be an effective approach for dwarfing breeding of turf grasses.


Assuntos
Redes Reguladoras de Genes/efeitos da radiação , Mutação , Poaceae/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fenótipo , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/efeitos da radiação , Poaceae/efeitos da radiação , Estações do Ano
2.
BMC Genomics ; 13: 201, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22621340

RESUMO

BACKGROUND: Chinese bayberry (Myrica rubra Sieb. and Zucc.) is a subtropical evergreen tree originating in China. It has been cultivated in southern China for several thousand years, and annual production has reached 1.1 million tons. The taste and high level of health promoting characters identified in the fruit in recent years has stimulated its extension in China and introduction to Australia. A limited number of co-dominant markers have been developed and applied in genetic diversity and identity studies. Here we report, for the first time, a survey of whole genome shotgun data to develop a large number of simple sequence repeat (SSR) markers to analyse the genetic diversity of the common cultivated Chinese bayberry and the relationship with three other Myrica species. RESULTS: The whole genome shotgun survey of Chinese bayberry produced 9.01Gb of sequence data, about 26x coverage of the estimated genome size of 323 Mb. The genome sequences were highly heterozygous, but with little duplication. From the initial assembled scaffold covering 255 Mb sequence data, 28,602 SSRs (≥5 repeats) were identified. Dinucleotide was the most common repeat motif with a frequency of 84.73%, followed by 13.78% trinucleotide, 1.34% tetranucleotide, 0.12% pentanucleotide and 0.04% hexanucleotide. From 600 primer pairs, 186 polymorphic SSRs were developed. Of these, 158 were used to screen 29 Chinese bayberry accessions and three other Myrica species: 91.14%, 89.87% and 46.84% SSRs could be used in Myrica adenophora, Myrica nana and Myrica cerifera, respectively. The UPGMA dendrogram tree showed that cultivated Myrica rubra is closely related to Myrica adenophora and Myrica nana, originating in southwest China, and very distantly related to Myrica cerifera, originating in America. These markers can be used in the construction of a linkage map and for genetic diversity studies in Myrica species. CONCLUSION: Myrica rubra has a small genome of about 323 Mb with a high level of heterozygosity. A large number of SSRs were identified, and 158 polymorphic SSR markers developed, 91% of which can be transferred to other Myrica species.


Assuntos
Genoma de Planta , Repetições de Microssatélites , Myrica/genética , Sequência de Bases , China , Análise por Conglomerados , Evolução Molecular , Etiquetas de Sequências Expressas , Polimorfismo Genético
3.
J Zhejiang Univ Sci ; 4(3): 346-51, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12765291

RESUMO

Embryogenic calli were induced from the seeds of creeping bentgrass (Agrostis palustris Huds.) cv. Regent and colonial bentgrass (Agrostis Tenuis Sibth. Fl. Oxen.) cv. Tiger. The embryogenic calli were precultured on fresh medium for 4-7 days and then co-cultivated with Agrobacterium tumefaciens, LBA4404, which contains plasmid vector-pSBGM harboring bar coding region, synthetic green fluorescent protein (sGFP) coding region and matrix attachment region (MAR). After 3 days of co-cultivation, the calli were washed thoroughly and transferred to MS medium containing 2 mg/L of 2, 4-D, 12-15 mg/L phosphinothricin (PPT) and 250 mg/L of cefotaxime. After 2-3 months of selection, the actively growing calli of 'Regent' and 'Tiger' were transferred to MS medium with 12-15 mg/L PPT and 250 mg/L cefotaxime for regeneration. The putative transformants were maintained on MS medium with 3 mg/L PPT for long period but control died within 1 month. After establishing in greenhouse, the transformants also showed strong resistance to 0.4% of herbicide Basta but control plants died within 2 weeks. Under confocal microscope, both young leaves and roots showed significant GFP expression. PCR analysis revealed the presence of a DNA fragment of GFP gene at the expected size (380 bp) in the transformants and its absence in a randomly selected control plant.


Assuntos
Agrostis/efeitos dos fármacos , Agrostis/genética , Aminobutiratos/farmacologia , Resistência a Medicamentos/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Rhizobium/genética , Agrostis/classificação , Agrostis/citologia , Relação Dose-Resposta a Droga , Engenharia Genética/métodos , Herbicidas/farmacologia , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Plantas Geneticamente Modificadas/citologia , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...