Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 356: 107577, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37897924

RESUMO

Flexible coils offer improved patient comfort and better imaging quality. However, rigid and bulky baluns in RF coils limit flexibility and manufacturing. A miniaturized and flexible balun design was proposed to address this issue. It replaced rigid components with an ultra-flexible rubber tube and a flexible coaxial capacitor. Simulations validated the concept, and bench tests confirmed its performance, including a measured common-mode rejection ratio of -15.8 dB. The flexible balun was integrated into a 4-channel coil array, evaluating impedance changes caused by the "hand effect." Compared to coils without the balun, the flexible coil with the proposed balun showed improved robustness in impedance matching and inter-element couplings. Transmit efficiency of the flexible coil with the balun was compared to coils without a balun and with a rigid, shielded cable trap. Results demonstrated that the proposed balun circuit maintained high transmit efficiency. Overall, the flexible balun design offers a promising solution for improving the flexibility and performance of RF coil arrays in MRI applications.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Desenho de Equipamento
2.
Sensors (Basel) ; 23(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850397

RESUMO

Self-decoupling technology was recently proposed for radio frequency (RF) coil array designs. Here, we propose a novel geometry to reduce the peak local specific absorption rate (SAR) and improve the robustness of the self-decoupled coil. We first demonstrate that B1 is determined by the arm conductors, while the maximum E-field and local SAR are determined by the feed conductor in a self-decoupled coil. Then, we investigate how the B1, E-field, local SAR, SAR efficiency, and coil robustness change with respect to different lift-off distances for feed and mode conductors. Next, the simulation of self-decoupled coils with optimal lift-off distances on a realistic human body is performed. Finally, self-decoupled coils with optimal lift-off distances are fabricated and tested on the workbench and MRI experiments. The peak 10 g-averaged SAR of the self-decoupled coil on the human body can be reduced by 34% by elevating the feed conductor. Less coil mismatching and less resonant frequency shift with respect to loadings were observed by elevating the mode conductor. Both the simulation and experimental results show that the coils with elevated conductors can preserve the high interelement isolation, B1+ efficiency, and SNR of the original self-decoupled coils.

3.
NMR Biomed ; 36(1): e4818, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35994526

RESUMO

Inductively coupled RF coils are an inexpensive and simple method to realize wireless RF coils in MRI. They are low cost and can greatly ease the MR scan setup and improve patient comfort, since they do not require bulky components such as cables, baluns, preamplifiers, and connectors. Previous works have typically used single-layer loops as wireless coils. In this work, we present a novel wireless coil, where two loops are stacked and decoupled with a shared capacitor. We found that such a stacked structure could increase the coil efficiency and SNR. Compared with the single-layer wireless coil, both electromagnetic simulation and MR experiment results demonstrate that the stacked wireless coil has a considerable SNR improvement of approximately 35%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...