Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(41): 48800-48809, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788171

RESUMO

Capacitive deionization (CDI) is a promising desalination technology, and metal-organic framework (MOF)-derived carbon as an electrode material has received more and more attention due to its designable structure. However, MOF-derived carbon materials with single-pore structures have been difficult to meet the technical needs of related fields. In this work, the ordered hierarchical porous carbon framework (OMCF) was prepared by the template method using zeolitic imidazolate frameworks-8 (ZIF-8) as a precursor. The pore structures, surface properties, electrochemical properties, and CDI performances of the OMCF were investigated and compared with the microporous carbon framework (MCF), also derived from ZIF-8. The results show that the hierarchical porous carbon OMCF possessed a higher specific surface area, better hydrophilic surface (with a contact angle of 13.45°), and higher specific capacitance and ion diffusion rate than those of the MCF, which made the OMCF exhibit excellent CDI performances. The adsorption capacity and salt adsorption rate of the OMCF in a 500 mg·L-1 NaCl solution at 1.2 V and a 20 mL·min-1 flow rate were 12.17 mg·g-1 and 3.34 mg·g-1·min-1, respectively, higher than those of the MCF. The deionization processes of the OMCF and MCF closely follow the pseudo-first-order kinetics, indicating the double-layer capacitance control. This work serves as a valuable reference for the CDI application of N-doped hierarchical porous carbon derived from MOFs.

2.
Inorg Chem ; 60(4): 2614-2622, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33494599

RESUMO

CdSe/Cu core/shell nanowires (NWs) are successfully synthesized by a wet chemical method for the first time. By utilizing the solution-liquid-solid (SLS) mechanism, CdSe NWs are fabricated by Bi seeds, which act as catalysts. In the subsequent radial overcoating of the Cu shell on the CdSe NWs, Fe ions have been proven to be an indispensable and efficient catalyzer. The thickness of the Cu shell could be well controlled in the range of 3 to 6 nm by varying the growth temperature (from 300 to 360 °C). Our synthetic strategy pioneers a new possibility for the controlled synthesis of semiconductor-metal heterostructure NWs (especially for II-VI semiconductors), such as CdS/Cu, ZnS/Au, and ZnO/Ag, which had broad application prospects in photoconductors, thin-film transistors, and light-emitting diodes. Theoretically, electrons flow from a higher Fermi-level material to the bottom Fermi-level at the metal-semiconductor heterojunction interface, which aligns the Fermi level and establishes the Schottky barrier. It leads to excess negative charges in metals and excess positive charges in semiconductors. Therefore, those effective electron traps reduce the probability of photogenerated electron-hole pair recombination efficiently, which has been widely applied in solar cells, sensors, photocatalysis, and energy storage. The breakthrough and innovation of this synthesis method have opened up a new synthetic route with a mild reaction environment, low energy consumption, and convenience.

3.
J Hazard Mater ; 307: 318-27, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26799223

RESUMO

The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti(4+), Al(3+) and Fe(3+), and the mechanism of selectively Fe(3+) removal using [Hbet][Tf2N] as precipitating reagent were discussed. The extracting of Ti(4+), Al(3+) and Fe(3+) in concentrated H2SO4 is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti(4+) is approximately 92.3%, whereas Al(3+) and Fe(3+) leaching are respectively 75.8% and 84.2%. [Hbet][Tf2N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti(4+), whereas the dosage of precipitating reagent is that for Al(3+) recovery. The maximum flotation recovery of Ti(4+) is 92.7%, whereas the maximum Al(3+) recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti(4+) of 15.5g/L, Al(3+) of 30.4g/L and Fe(3+) of 0.48g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...