Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142295, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729445

RESUMO

In this study, high-ash coal slime-based mineral soil amendment (MSA) was prepared via the hydrothermal method using high-ash coal slime as raw material, supplemented with activator calcium oxide and additive KOH solution. After hydrothermal treatment at 230 °C for 5 h, the original crystalline phase (quartz and kaolinite) of the high-ash slime was completely transformed into hydrotalcite zeolite, tobermorite, and silicate of potassium aluminosilicate, which has the largest specific surface area. The adsorption of Pb2+ and Cd2+ was adherent to the kinetic equation of secondary adsorption and Freundlich models, and the removal of Pb2+ and Cd2+ reached up to 362.58 mg g-1 and 64.67 mg g-1. The successive releases of SiO2 and CaO from MSA conformed to the Elovich equation, whereas the releases of SiO2 in Cd-containing environments and CaO in Pb- and Cd-containing environments more closely conformed to the power function; the releases of K2O all conformed to the first-order kinetic equation. The presence of Pb2+ and Cd2+ in the environment promotes the release of potassium and calcium elements with MSA's ion-exchange ability, and attenuates the release of silicon elements. Combining Pb2+ and Cd2+ with silicon resulted in the intolerant precipitation of 3PbO·2SiO2 and Cd2SiO4. The mineral precipitation mechanism is the most important mechanism of MSA in immobilizing heavy metals, accounting for 72.7%-80.5% of the total adsorption. Further contaminated soil immobilization experiments also showed that the application of MSA significantly reduced the bioavailability of soil heavy metals. When the MSA addition amount was 1.6%, the residual state increased by 63.58%. In conclusion, preparing MSA may effectively utilize coal-based solid waste with high added value.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Adsorção , Poluentes do Solo/química , Poluentes do Solo/análise , Metais Pesados/química , Metais Pesados/análise , Solo/química , Cinética , Carvão Mineral , Cinza de Carvão/química , Cádmio/química , Chumbo/química , Recuperação e Remediação Ambiental/métodos , Óxidos/química , Compostos de Cálcio/química
2.
Molecules ; 27(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36557899

RESUMO

Gold nanoparticles (AuNPs) with interesting optical properties have attracted much attention in recent years. The synthesis and plasmonic properties of AuNPs with a controllable size and shape have been extensively investigated. Among these AuNPs, gold nanotriangles (AuNTs) exhibited unique optical and plasmonic properties due to their special triangular anisotropy. Indeed, AuNTs showed promising applications in optoelectronics, optical sensing, imaging and other fields. However, only few reviews about these applications have been reported. Herein, we comprehensively reviewed the synthesis and self-assembly of AuNTs and their applications in recent years. The preparation protocols of AuNTs are mainly categorized into chemical synthesis, biosynthesis and physical-stimulus-induced synthesis. The comparison between the advantages and disadvantages of various synthetic strategies are discussed. Furthermore, the specific surface modification of AuNTs and their self-assembly into different dimensional nano- or microstructures by various interparticle interactions are introduced. Based on the unique physical properties of AuNTs and their assemblies, the applications towards chemical biology and sensing were developed. Finally, the future development of AuNTs is prospected.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Diagnóstico por Imagem
3.
Enzyme Microb Technol ; 134: 109487, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32044034

RESUMO

Haematococcus pluvialis could accumulate large amounts of triacylglycerol (TAG) and astaxanthin under various environmental stresses. To gain insights into the multiple defensive systems for carbon metabolism against nitrogen starvation, transcriptome analysis was performed. It was found that the genes related to carbon fixation, glycolysis, fatty acid and carotenoid biosynthesis pathways were up-regulated remarkably. Glyceraldehyde 3-phosphate (G3P) biosynthesis was accelerated with the enhanced C3 and C4 pathway. Meanwhile, the pyruvate kinase (PK) and pyruvate dehydrogenase E2 component (aceF) genes were significantly increased 12.9-fold and 13.9-fold, respectively, resulting more pyruvate and acetyl-CoA generation, which were beneficial to carotenoids and fatty acid biosynthesis. Methylerythritol 4-phosphate (MEP) pathway mediated carotenoid precursor isopentenyl diphosphate (IPP) synthesis, as the all eight related genes were up-regulated. The carbon flux toward astaxanthin biosynthesis with the increased astaxanthin pathway genes. The redistribution of carbon was also promoted for TAG accumulation. In addition, the up-regulation of diacylglycerol acyltransferase (DGAT) and phospholipid: diacylglycerol acyltransferase (PDAT) genes indicated that both acyl-CoA dependent and independent pathway regulated TAG accumulation. Therefore, this work reveals the multiple defensive mechanism for carbon metabolism in response to nitrogen starvation, which extended our understanding on the carotenoids, TAG and other important metabolites synthesis.


Assuntos
Vias Biossintéticas/genética , Clorófitas/genética , Clorófitas/metabolismo , Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Ciclo do Carbono , Carotenoides/metabolismo , Ácidos Graxos/biossíntese , Glicólise , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...