Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39001042

RESUMO

With the transformation and development of the automotive industry, low-cost and seamless indoor and outdoor positioning has become a research hotspot for modern vehicles equipped with in-vehicle infotainment systems, Internet of Vehicles, or other intelligent systems (such as Telematics Box, Autopilot, etc.). This paper analyzes modern vehicles in different configurations and proposes a low-cost, versatile indoor non-visual semantic mapping and localization solution based on low-cost sensors. Firstly, the sliding window-based semantic landmark detection method is designed to identify non-visual semantic landmarks (e.g., entrance/exit, ramp entrance/exit, road node). Then, we construct an indoor non-visual semantic map that includes the vehicle trajectory waypoints, non-visual semantic landmarks, and Wi-Fi fingerprints of RSS features. Furthermore, to estimate the position of modern vehicles in the constructed semantic maps, we proposed a graph-optimized localization method based on landmark matching that exploits the correlation between non-visual semantic landmarks. Finally, field experiments are conducted in two shopping mall scenes with different underground parking layouts to verify the proposed non-visual semantic mapping and localization method. The results show that the proposed method achieves a high accuracy of 98.1% in non-visual semantic landmark detection and a low localization error of 1.31 m.

2.
Sensors (Basel) ; 22(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36016025

RESUMO

The advancement of smartphones with multiple built-in sensors facilitates the development of crowdsourcing-based indoor map construction and localization. This paper proposes a crowdsourcing-based indoor semantic map construction and localization method using graph optimization. Using waypoints, semantic landmarks, and Wi-Fi landmarks as nodes and the relevance between waypoints and landmarks (i.e., waypoint-waypoint, waypoint-semantic, waypoint-Wi-Fi, semantic-semantic, and Wi-Fi-Wi-Fi) as edges, the optimization graph is constructed. Initializing the venue map is the single-track semantic map with the highest quality, as determined by a proposed map quality evaluation function. The aligned venue and candidate maps are optimized while satisfying the constraints, with the candidate map exhibiting the highest degree of similarity to the venue map. The lightweight venue map is then updated in terms of waypoint and landmark attributes, as well as the relationship between waypoints and landmarks. To determine a pedestrian's location on a venue map, similarities between a local map and a venue map are evaluated. Experiments conducted in an office building and shopping mall scenes demonstrate that crowdsourcing-based venue maps are superior to single-track semantic maps. Additionally, the landmark matching-based localization method can achieve a mean localization error of less than 0.5 m on the venue map, compared to 0.6 m in a single-track semantic map.

3.
Sensors (Basel) ; 21(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34833504

RESUMO

The visual-inertial simultaneous localization and mapping (SLAM) is a feasible indoor positioning system that combines the visual SLAM with inertial navigation. There are accumulated drift errors in inertial navigation due to the state propagation and the bias of the inertial measurement unit (IMU) sensor. The visual-inertial SLAM can correct the drift errors via loop detection and local pose optimization. However, if the trajectory is not a closed loop, the drift error might not be significantly reduced. This paper presents a novel pedestrian dead reckoning (PDR)-aided visual-inertial SLAM, taking advantage of the enhanced vanishing point (VP) observation. The VP is integrated into the visual-inertial SLAM as an external observation without drift error to correct the system drift error. Additionally, the estimated trajectory's scale is affected by the IMU measurement errors in visual-inertial SLAM. Pedestrian dead reckoning (PDR) velocity is employed to constrain the double integration result of acceleration measurement from the IMU. Furthermore, to enhance the proposed system's robustness and the positioning accuracy, the local optimization based on the sliding window and the global optimization based on the segmentation window are proposed. A series of experiments are conducted using the public ADVIO dataset and a self-collected dataset to compare the proposed system with the visual-inertial SLAM. Finally, the results demonstrate that the proposed optimization method can effectively correct the accumulated drift error in the proposed visual-inertial SLAM system.


Assuntos
Pedestres , Aceleração , Algoritmos , Humanos , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...