Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(34): 82866-82877, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37332032

RESUMO

High concentrations of arsenic and antimony contamination in soil are a potential risk to the ecological environment and human health. Soil washing can effectively and permanently reduce the soil contamination. This study used Aspergillus niger fermentation broth as a washing agent to remove As and Sb from contaminated soil. Characterization of organic acids in the fermentation broth by high-performance liquid chromatographic (HPLC) and chemically simulated leaching experiments revealed that oxalic acid played a significant role in removing As and Sb from the soil. The effect of washing conditions on the metal removal rate of Aspergillus niger fermentation broth was investigated by batch experiments, and the optimal conditions were determined: no dilution, pH 1, L/S ratio 15:1, and leaching at 25 °C for 3 h. The soils were washed three times under optimal conditions, with 73.78%, 80.84%, and 85.83% removal of arsenic and 65.11%, 76.39%, and 82.06% removal of antimony, respectively. The results of metal speciation distribution in the soil showed that the fermentation broth could effectively remove As and Sb on amorphous Fe/Al hydrous oxides in soil. The analysis of X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) of soils before and after washing showed that the washing of Aspergillus niger fermentation broth had a minor effect on the structural changes of soils. After washing, soil organic matter and soil enzyme activity were increased. Thus, Aspergillus niger fermentation broth shows excellent potential as a washing agent for removing As and Sb from soils.


Assuntos
Arsênio , Poluentes do Solo , Humanos , Arsênio/análise , Antimônio/análise , Aspergillus niger , Fermentação , Solo/química , Poluentes do Solo/análise
2.
Environ Geochem Health ; 45(5): 2533-2547, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36036341

RESUMO

Long-term mining activities have caused serious heavy metals contamination of farmland soils. In this study, we investigated the concentrations, distributions, accumulations, potential ecological risk, and sources of eight heavy metals in farmland soils of Pb-Zn mining areas. According to the soil standard GB15618-2018, Cd was the most contaminated, followed by Pb and Zn. The geo-accumulation index showed that Pb, Zn, Cd, and Hg accumulated seriously. The potential risk index indicated that Cd, Hg, and Pb were the main environmental risk elements. An integrated approach combining multivariate statistical analysis, PMF, and GIS mapping was used to analyze the sources of heavy metals. Four main sources were identified and quantified: (1) mining activities source, the main source of Cd (71.09%) and Zn (61.88%); (2) agricultural activities source, dominated by Hg (73.01%); (3) atmospheric deposition sources, with Pb (85.11%) as the main contributor; (4) natural source, characterized by Cr (72.96%), Ni (66.04%), As (55.98%) and Cu (37.70%). This study would help us understand the pollution characteristics and sources of farmland soils in mining areas and provide basic information for the next step of pollution control and remediation.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Solo , Fazendas , Chumbo/análise , Cádmio/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Mineração , Mercúrio/análise , Zinco/análise , China , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...