Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 243: 125216, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301341

RESUMO

Composite films were prepared using a flow casting method, with chitosan and pullulan as film-forming agents and Artemisia annua essential oil as the UV absorber. The utility of the composite films for preserving grape berries was assessed. The effect of the added Artemisia annua essential oil on the physicochemical properties of the composite film was investigated to determine the optimal amount of essential oil that should be added to the composite film. When the Artemisia annua essential oil content was 0.8 %, the elongation at break of the composite film increased to 71.25 ± 2.87 % and the water vapor transmission rate decreased to 0.378 ± 0.007 g‧mm/(m2‧h‧kpa). The transmittance of the composite film was almost 0 % in the UV region (200-280 nm) and <30 % in the visible light region (380-800 nm), reflecting the UV absorption by the composite film. Additionally, the composite film extended the storage time of the grape berries. Therefore, the composite film containing Artemisia annua essential oil may be a promising fruit packaging material.


Assuntos
Artemisia annua , Quitosana , Óleos Voláteis , Vitis , Quitosana/química , Embalagem de Alimentos
2.
Curr Issues Mol Biol ; 45(3): 2035-2059, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36975501

RESUMO

CYCLOIDEA (CYC)-like genes belong to the TCP transcription factor family and play important roles associated with flower development. The CYC-like genes in the CYC1, CYC2, and CYC3 clades resulted from gene duplication events. The CYC2 clade includes the largest number of members that are crucial regulators of floral symmetry. To date, studies on CYC-like genes have mainly focused on plants with actinomorphic and zygomorphic flowers, including Fabaceae, Asteraceae, Scrophulariaceae, and Gesneriaceae species and the effects of CYC-like gene duplication events and diverse spatiotemporal expression patterns on flower development. The CYC-like genes generally affect petal morphological characteristics and stamen development, as well as stem and leaf growth, flower differentiation and development, and branching in most angiosperms. As the relevant research scope has expanded, studies have increasingly focused on the molecular mechanisms regulating CYC-like genes with different functions related to flower development and the phylogenetic relationships among these genes. We summarize the status of research on the CYC-like genes in angiosperms, such as the limited research conducted on CYC1 and CYC3 clade members, the necessity to functionally characterize the CYC-like genes in more plant groups, the need for investigation of the regulatory elements upstream of CYC-like genes, and exploration of the phylogenetic relationships and expression of CYC-like genes with new techniques and methods. This review provides theoretical guidance and ideas for future research on CYC-like genes.

3.
Front Plant Sci ; 13: 1015942, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212386

RESUMO

Opisthopappus longilobus, which is a unique wild plant resource in China, produces leaves and flowers with distinct aromas. However, there have been relatively few molecular studies on its floral aroma, which has hindered the research on this plant species at the molecular level and the breeding of novel varieties. In this study, transcriptome and metabolome analyses were performed using O. longilobus leaves, buds, and inflorescences at the exposure, initial opening, and blooming stages. Using high-quality reads and assembly software, a total of 45,674 unigenes were annotated according to the Nr, Swiss-Prot, KOG, and KEGG databases. Additionally, a GC-MS system and a self-built database were used to detect 1,371 metabolites in the leaves, buds, and inflorescences. Terpene metabolites were the most common compounds (308 in total). We analyzed the gene network regulating terpenoid accumulation in O. longilobus and identified 56 candidate genes related to terpenoid synthesis. The expression of OlPMK2, OlMVK1, OlTPS1, and OlTPS3 may lead to the accumulation of 11 different terpenoids specifically in the inflorescences at the exposure, initial opening, and blooming stages. The generated data may be useful for future research on O. longilobus genetic resources and the molecular mechanism regulating aroma formation in this plant species. The findings of this study may be used to accelerate the breeding of new O. longilobus varieties with enhanced aromatic traits.

4.
Front Plant Sci ; 13: 1014114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247591

RESUMO

'Taihang Mingzhu' is the hybrid offspring of Opisthopappus taihangensis, and it has an excellent characteristic of whole-plant fragrance. At present, the genes and metabolites involved in the synthesis of its aromatic compounds are unknown because of the paucity of molecular biology studies on flowering in the Opisthopappus Shih genus. To elucidate the biosynthetic pathways of terpenoids, the main aromatic compounds in 'Taihang Mingzhu', we conducted transcriptome and metabolite analyses on its leaves and bud, inflorescences at the color-development, flowering, and full-bloom stages. A total of 82,685 unigenes were obtained, of which 43,901 were annotated on the basis of information at the protein databases Nr, SwissProt, KEGG, and COG/KOG (e-value<0.00001). Using gas headspace solid-phase microextraction chromatography - mass spectrometry (HS-SPME-GC/MS), 1350 metabolites were identified, the most abundant of which were terpenoids (302 metabolites). Analyses of the gene regulatory network of terpenoids in 'Taihang Mingzhu' identified 52 genes potentially involved in the regulation of terpenoid synthesis. The correlations between genes related to terpenoid metabolism/regulation and metabolite abundance were analyzed. We also extracted the essential oil from the leaves of 'Taihang Mingzhu' by hydrodistillation, and obtained 270 aromatic compounds. Again, the most abundant class was terpenoids. These results provide guidance for the extraction of essential oil from 'Taihang Mingzhu' leaves and flowers. In addition, our analyses provide valuable genetic resources to identify genetic targets to manipulate the aromatic profiles of this plant and other members the Opisthopappus Shih genus by molecular breeding.

5.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142353

RESUMO

The rapid growth of the global population has resulted in a considerable increase in the demand for food crops. However, traditional crop breeding methods will not be able to satisfy the worldwide demand for food in the future. New gene-editing technologies, the most widely used of which is CRISPR/Cas9, may enable the rapid improvement of crop traits. Specifically, CRISPR/Cas9 genome-editing technology involves the use of a guide RNA and a Cas9 protein that can cleave the genome at specific loci. Due to its simplicity and efficiency, the CRISPR/Cas9 system has rapidly become the most widely used tool for editing animal and plant genomes. It is ideal for modifying the traits of many plants, including food crops, and for creating new germplasm materials. In this review, the development of the CRISPR/Cas9 system, the underlying mechanism, and examples of its use for editing genes in important crops are discussed. Furthermore, certain limitations of the CRISPR/Cas9 system and potential solutions are described. This article will provide researchers with important information regarding the use of CRISPR/Cas9 gene-editing technology for crop improvement, plant breeding, and gene functional analyses.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Animais , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Produtos Agrícolas , Edição de Genes/métodos , Genoma de Planta , Melhoramento Vegetal , RNA Guia de Cinetoplastídeos , Tecnologia
6.
Front Plant Sci ; 13: 947331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991433

RESUMO

Chrysanthemum morifolium has ornamental and economic values. However, there has been minimal research on the morphology of the chrysanthemum florets and related genes. In this study, we used the leaves as a control to screen for differentially expressed genes between ray and disc florets in chrysanthemum flowers. A total of 8,359 genes were differentially expressed between the ray and disc florets, of which 3,005 were upregulated and 5,354 were downregulated in the disc florets. Important regulatory genes that control flower development and flowering determination were identified. Among them, we identified a TM6 gene (CmTM6-mu) that belongs to the Class B floral homeotic MADS-box transcription factor family, which was specifically expressed in disc florets. We isolated this gene and found it was highly similar to other typical TM6 lineage genes, but a single-base deletion at the 3' end of the open reading frame caused a frame shift that generated a protein in which the TM6-specific paleoAP3 motif was missing at the C terminus. The CmTM6-mu gene was ectopically expressed in Arabidopsis thaliana. Petal and stamen developmental processes were unaffected in transgenic A. thaliana lines; however, the flowering time was earlier than in the wild-type control. Thus, the C-terminal of paleoAP3 appears to be necessary for the functional performance in regulating the development of petals or stamens and CmTM6-mu may be involved in the regulation of flowering time in chrysanthemum. The results of this study will be useful for future research on flowering molecular mechanisms and for the breeding of novel flower types.

7.
J Environ Sci (China) ; 22(7): 1067-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21174997

RESUMO

To understand certain mechanisms causing variations between rice cultivars with regard to cadmium uptake and tolerance, pot soil experiments were conducted with two rice cultivars of different genotypes under different soil Cd levels. The relationships between plant Cd uptake and iron/manganese (Fe/Mn) plaque formation on roots were investigated. The results showed that rice cultivars differed markedly in Cd uptake and tolerance. Under soil Cd treatments, Cd concentrations and accumulations in the cultivar Shanyou 63 (the genotype indica) were significantly higher than those in the cultivar Wuyunjing 7 (the genotype japonica) (P < 0.01, or P < 0.05), and Shanyou 63 was more sensitive to Cd toxicity than Wuyunjing 7. The differences between the rice cultivars were the largest at relatively low soil Cd level (i.e., 10 mg/kg). Fe concentrations in dithionite-citrate-bicarbonate root extracts of Shanyou 63 were generally lower than that of Wuyunjing 7, and the difference was the most significant under the treatment of 10 mg Cd/kg soil. The results indicated that the formation of iron plaque on rice roots could act as a barrier to soil Cd toxicity, and may be a "buffer" or a "reservoir" which could reduce Cd uptake into rice roots. And the plaque may contribute, to some extent, to the genotypic differences of rice cultivars in Cd uptake and tolerance.


Assuntos
Cádmio/metabolismo , Ferro/metabolismo , Manganês/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Cádmio/toxicidade , Oryza/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...